
Part III
Predefined Classes

Table of Contents

1.  Basic Data Structures 1-1
Object 1-5
Int 1-7
Var 1-8
Handle1-10
basic Array methods - bArray,wArray,Array 1-12
Array 1-13
X-Array 1-14
Ordered-Col 1-15
Dictionary 1-17
LinkedList 1-19
Data Structure-Related Yerk Words 1-20

2.  Strings 2-1
BasicStr 2-4
String 2-6
sArray 2-8
String-Related Yerk Words 2-9

3.  Files 3-1
File 3-5
FileList 3-9
PathList 3-10
Fin 3-11
File-Related Yerk Words 3-12

4.  Events 4-1
Event 4-5
Mouse 4-7
Timer 4-8
Event-Related Yerk Words 4-9

5.  Windows 5-1



Window 5-4
CtlWind 5-9
Window-Related Yerk Words 5-9



6.  Menus 6-1
Menu 6-4
AppleMenu 6-6
hMenu 6-7
pMenu 6-8
MBar 6-10
Menu-Related Yerk Words 6-11

7.  Controls 7-1
Control 7-5
VScroll 7-8
Control-Related Yerk Words 7-9

8.  Graphics 8-1
Point 8-3
Rect 8-5
RndRect 8-8
Oval 8-9
GrafPort 8-10
QDBitMap 8-11
Image 8-12
Picture 8-14
Icon 8-16
Graphics-Related Yerk Words8-16

9.  Dialogs 9-1
Dialog 9-4
UserItem 9-7
RadioSet 9-8
Alert 9-9
Dialog-Related Yerk Words 9-9

10.  Drivers 10-1
PBDrvr 10-3
Port 10-5
Driver-Related Yerk Words 10-7

11.  Floating Point 11-1
Float 11-4
fArray 11-6
FltHeap 11-7
Floating Point-Related Yerk Words 11-8



Chapter 1

Basic Data Structures

About This Chapter
This chapter describes the Yerk classes and words provide you with the fundamental structures that
are  necessary  for  programming  in  Yerk.   Most  of  these  correspond  to  well-established  data
structures that are familiar to computer scientists, and some of them are unique to Yerk on the
Macintosh.  

Recommended Reading 
IM -  Memory Manager
IM -  Programming in Assembly Language

Source Files
Object
Struct 

Using the Basic Data Structures
This chapter will discuss the primitive classes that Yerk provides as building blocks out of which
you can assemble the data structures necessary to build your application.  These classes are useful
both as Instance Variables of more complex classes and as general classes from which you can
derive more specialized subclasses.  The classes that will be covered here include:

  Object
  Bytes
  Int
  Var
  Handle
  bArray
  wArray
  Array
  X-Array
  Ordered-col
  WordCol
  ByteCol
  Dictionary
  LinkedList



Class Object and Bytes
The root of all classes is class Object.  It has no data, but does have a set of behaviors that are
generally  applicable  to  any  object,  regardless  of  its  format.   A class  that  has  no  particular
inheritance  path  should make Object  its  superclass,  which  will  cause  it  to  inherit  the  general
properties  that  all  objects  should  have.   Addr:  and Abs:  return  the  relative  and absolute  base
address of an object.  In the case of a public object, this is usually not necessary because an 



object  returns  its  address  when  executed;  Ivars,  however,  have  no  such  behavior,  and  these
methods are particularly useful when you need the address of an instance variable for a Toolbox
call.  Other methods in Object provide a hex dump of an object's data, access to an object's class
pointer, and some general methods for indexed classes.

Bytes is not really a class, but rather is a Yerk word that enables you to allocate a certain number of
bytes as an instance variable within a class definition.  Bytes is chiefly useful when mapping parts
of Toolbox data structures that only need to be allocated but not accessed.  Bytes actually creates
an ivar of class Object, so you can use Object's methods, such as Addr:, on an Ivar created with
Bytes.  As an example, class Window uses Bytes to allocate portions of the window record that
Yerk doesn't need  direct access to.  Remember, however, that Bytes is not an indexed type like
barray -- it creates a single field.

Using the Scalar Classes
Classes Int, Var and Handle are called Scalar classes because they represent non-indexed objects
that hold simple integer or pointer data.  An Int can hold 16-bit, signed or unsigned integers.  Since
68000 word fetches must be even-aligned, Ints are also used in Yerk for holding boolean values
even though they theoretically could be stored in bytes.  A Var can hold 32-bit signed values, and is
also used to hold object addresses, heap block pointers, and cfas of Yerk words.  A Handle is a
subclass of Var that has methods added for allocating, sizing, locking and releasing relocatable
blocks of heap.  For all of the scalar classes, Get: and Put: fetch and store the object's private data
with an operation of the appropriate width. 

Using the Array Classes
There are three basic array classes in Yerk - bArray, wArray and Array, having 1, 2 and 4-byte
indexed cells.  We have defined a basic set of array methods that are shared by these classes, and
must be redefined if you create array classes with different indexed widths.  Most array messages
require that an index be on the stack that reflects which cell of the array the operation refers to
(indexes begin with 0).  

You can find the address of an indexed cell of any width with the ^Elem: (pointer-to-element)
method.  This method is defined in class Object in a way that is independent of the actual width of
the class's cells, because the width is looked up at runtime. You can inherit ^Elem: for use with any
indexed class without redefining it because of this generality.  Other methods in Object that are
general enough to work with any indexed object are:  Limit:, which tells you the maximum number
of elements allocated to an object;  Width:, which tells you the width of an object's indexed cells;
Clear:, which sets all of an array's cells to 0;  and IXAddr:, which leaves the address of the 0th
indexed cell.  Yerk will issue a "Class is not indexed" error if you attempt to use any of the indexed
methods on a non-indexed object.

There is also a group of methods that must be redefined for each array class having a different
width.  These include: At:, which fetches the contents of the cell at an index; To: which stores to
the indexed cell at an index, +To:, which increments an indexed cell by a value; Fill:, which fills an
array with a value; Get:, which fetches all of an array's elements and places them on the stack (be
careful with large arrays!), and Put:, which stores from the stack to each of an array's cells.  This



group is shared by the three array classes that are predefined in Yerk, and is documented later in
this section.

Because class Array has 4-byte cells, it can be used to hold pointers to various kinds of structures
in a way that the other array classes cannot.  Arrays can be used to hold arrays of objects that you
wish to refer to by index rather than by name.  For instance, consider an application in which you
need four windows accessible by index:



  4 Array Windows

  : fillWindows  4 0 
      DO  heap> window  I to: windows 
      LOOP  ;

   : killWindows  4 0 
       DO  I dispose: windows 
       LOOP   ; 

 \  resize window at index 2
 300 100 size: [ 2 at: windows ]

In this  example,  the array Windows is  used  to  hold pointers  to  objects  of  class  Window.  In
fillWindows, the heap> prefix causes class Window to allocate a headerless object on the heap,
leaving its address on the stack.  This is then stored in a cell of the array Windows.  You can then
send late-bound messages to one of the windows by index, as in the Size: message at the bottom.
Actually, the objects in Windows could be of any class that accepted a Size: message, due to the
late binding.  The word killWindows uses Array's Dispose: method to release the heap occupied by
each of the window objects.  You can exploit any kind of indexed structure - arrays,  sequential and
linked lists,  to hold pointers to objects. As you become more experienced with programming in
Yerk,  you will find that this approach combined with late binding is one of the most powerful
aspects of the language.

Class X-Array adds to the basic Array the ability to execute one of its indexed cells, assuming that
it holds the cfa of a Yerk word.  X-Array is a very important class in Yerk, because its behavior is
used throughout the system itself to provide control dispatching by index,  as in Menu, Event and
VScroll.  The Classinit: method in X-Array sets each indexed cell to Null so the object will behave
gracefully  if  you fail  to  initialize it  in  your  application.   Use X-Array whenever  you need to
execute one of a group of Yerk words based on a series of contiguous indices.

 
Sequential and Linked Lists
Class  Ordered-Col  is  another  important  class  in  Yerk.   It  adds  to  Array  and  X-Array,  which
comprise its inheritance path, the concept of a current length and the ability to add to and remove
from the list.  This list also has many of the properties of a stack, which are exploited in such
classes as FileList (see Chapter III.3).  When you create an Ordered-Col (O-C), you must specify,
as with all indexed classes, the number of elements to allocate in the dictionary (or the heap).  O-C
uses this as a maximum up to which its variable-length list will grow via the Add: method.  The
advantage of an O-C is that you can add values to the end of the list without maintaining the index
yourself, only the sequence in which to add.  You might want to utilize the O-C's  properties only
while initializing the object, after which it is simply used as an Array.  WordCol is an Ordered-Col
with 16-bit cells rather than 32-bit.

As an example, Yerk uses an Ordered-Col to hold its symbol table of Toolbox call names.  The



table is built by reading each name from a text file, generating a unique hash value for the name,
and adding it to the end of the list.  This is done at compile time, when the Tool module is being
built.  At runtime, the indexOf: method is used to search for a particular call, and the resulting
index is used to generate the correct trap value.  Ordered-Col can function in this way as a kind of
primitive dictionary that uses sequential searches for its lookup.  You 



could define a subclass of O-C that has more sophisticated searching capabilities if you needed to
implement a dictionary with superior performance.

Dictionary
Class Dictionary is a piece of code written for use with the assembler.  It is used to hold the symbol
table,  and allows strings (labels in the case of the assembler) to  be dynamically added as the
program is running, and associated with a value.   Dictionary is  a subclass of Array,  and each
element in the array can be the beginning of a chain of dictionary elements (instances of class
DictElt).  Class dictionary has two accessing methods, they are Enter: and Query:. When a label is
encountered in the assembler, it is entered in the symbol table.  If it is a definition, then the code
position is stored with it, so:

codePos token enter: symTab

(Note: token is an instance of class String) If it is in use, the routine will test to make certain that it
is not already defined.  If not, it enters it into the symbol table:

-1 token enter: symTab

At the completion of the first pass the symbol table is checked to see if it has any undefined labels,
with the following code sequence:

: check-table  { offset addr len -- }
offset -1 =
IF

print: token ." is an unresolved reference " cr
THEN ;



Data Structure Classes

class description:  Object

class Object
superclass Meta
source file Object
status Core    

description
    Object  contains  behavior  appropriate  to  all  objects  in  the  system.  Every  superclass  chain
ultimately traces back to Object.

instance variables 
None

indexed data None

methods 
non-indexed properties

addr:  { -- addr } 
Returns the relative base address of an object's data by copying it from the
top of  the methods stack to the parameter stack.

abs:  { -- addr } 
Returns the absolute base address of an object's data area.  Usually used as
an input to a Toolbox call.

class:  { -- addr } 
Returns a pointer to an object's class.

classinit:
This a very special method -- whenever an object is create, Yerk sends it a
classinit: message so that  it  will  initialize itself  to reasonable values,  or
whatever the programmer desires all objects of that class to do when created.
In class Object, it is a do-nothing method, allowing any subclass to override it
as  appropriate.   By  convention,  init:  is  used  for  explicit  programmatic
initialization and customization thereafter, and  new:  is used to set up the
toolbox-interface portion of toolbox objects (such as making a window known
to the Macintosh window manager).



length:  { -- #bytes } 
Returns the length of an object's data area.



dump:  { -- addr } 
Dumps the dictionary entry for the object in a hex format.

print:  { -- addr } 
Dumps the dictionary entry for the object in a hex format.  This provides a
default  print: method for objects that don't have a more sophisticated form
of displaying their data.

indexed properties
^elem:  { index -- addr } 

Returns the relative address for the element at index.

limit:  { index -- maxIndex+1 } 
Returns the allocated size of an indexed object.  The maximum usable index
for an indexed object is this value minus 1.

width:  { -- #bytes } 
Returns the width of each indexed element.

ixAddr:  { -- addr } 
Returns the relative address for the 0th element.

clear:  { -- } 
Sets each indexed element to 0.

system objects None
error messages "You can't use indexed methods on this class"

You tried to use an indexed method on a non-indexed class.



class description:  Int

class Int
superclass Object
source file Struct
status Core    

description
    Int provides storage for signed or unsigned 16-bit quantities.

instance variables 
2 Bytes data Room for 16 bits of data.

indexed data None 

methods 
accessing

get:  { -- val } 
Returns the value in the data area as a signed number.  If bit 15 is on, this bit
will be extended into the high-order word of the stack cell.

uget:  { -- uval } 
Returns the value in the data area as an unsigned number.  The high-order
word of the stack cell is always 0.

put:  { val  -- } 
Stores a new value in the data area.

clear:  { -- } 
Stores 0 in the data area.

int:  { -- int } 
Returns the value in the data area as a 16-bit stack cell.  This is useful for
Toolbox calls that require parameters of type Int.

=:  { addr -- } 
Left-to-right assignment of the contents of the data area to addr.

+:  { val -- } 
Adds val to the contents of the Int's data area.

printing



print:  { -- } 
Prints the data in the current base on the screen.

system objects None
error messages None



class description:  Var

class Var
superclass Object
source file Struct
status Core    

description
    Var provides storage for 32-bit quantities and pointers.

instance variables 
4 Bytes data Allocates 32 bits of data.

indexed data None

methods 
accessing

get:  { -- val } 
Returns the value in the data area as a signed number.

obj:  { -- addr } 
A synonym for get: when the contents of the Var is an object pointer.  Using
the selector obj: serves to document this fact more clearly.

put:  { val  -- } 
Stores a new value in the data area.

clear:  { -- } 
Stores 0 in the data area.

=:  { addr -- } 
Left-to-right assignment of the contents of the data area to addr.

+:  { val -- } 
Adds val to the contents of the Var's data area.

dispose:  { -- } 
Assumes that the contents of the Var is a pointer to a block of non-relocatable
heap.   Calls DISPOSE to release the heap block, and stores 0 in the Var.

exec:  { -- } 
Assumes that the contents of the Var is the cfa of a Yerk word, and executes
it.



printing
print:  { -- } 

Prints the data in the current base on the screen.

system objects None
error messages "I can't respond to exec: when my contents are 0"

An exec: was attempted on a Var holding 0.



class description:  Handle

class Handle
superclass Var
source file Struct
status Core    

description
    Handle adds to Var methods useful for manipulating relocatable blocks of heap.

instance variables  
None  (see Var) 

indexed data 4-byte cells 

methods 
accessing

ptr:  { -- relPtr } 
Returns a dereferenced, relative pointer from the handle.

release:  { -- } 
Releases the heap block pointed to by the handle and zeros the data.

setSize:  { len -- } 
Sets a new size for the heap block corresponding to the handle.

size:  { -- len } 
Returns the current size of the handle.

new:  { #bytes -- } 
Allocates a block of relocatable heap via the Memory Manager, and stores the
handle in the object's data.

lock:  { -- } 
Locks  the  block  corresponding  to  the  handle.\3/29/22his  automatically
performs a MoveHi prior to locking.

unlock:  { -- }
Unlocks the block corresponding to the handle.

locked?:  { -- b }
Returns a boolean; true if the block is locked.



getState:  { -- n }
Returns the state of the handle. Prior to locking a handle, it is best to get the
state  of  the  handle,  perform  whatever  operation  that  needed  the  handle
locked, then reset  the state of the handle with setState:

setState:  { n -- }
Sets the state of the handle.

valid:  { -- b }
Checks to see if the handle is really a valid handle. Returns true if it is, false if
not.

system objects None
error messages "Set handle size failed"

Non-0 return from memory manager on SetHSize.



class description:  basic Array methods - bArray,wArray,Array

class bArray,wArray,Array
superclass Object
source file Struct,Struct1
status Core    

description
    These basic access methods are implemented for the three array classes predefined in Yerk.

instance variables 
None

indexed data 1,2,4-byte cells 

methods 
accessing

at:  { index -- val } 
Returns the data at a given indexed cell.

to:  { val index -- } 
Stores data at a given indexed cell.

+to:  { increment index -- } 
Increments data at a given indexed cell.

fill:  { val -- } 
Stores val in each cell of the array.

get:  { -- val0 ... valN } 
Fetches each cell starting with 0 and stacks the values.

put:  { val0 ... valN -- } 
Stores data from the stack to each cell in the array.

system objects None
error messages None



class description:  Array

class Array
superclass Object
source file Struct
status Core    

description
    Array adds methods for heap manipulation to the basic array methods described above.

instance variables 
None

indexed data 4-byte cells 

methods 
accessing

dispose:  { ind -- } 
Assumes that the contents of the indexed cell  is a pointer to a block of non-
relocatable heap.   Calls DISPOSE  to release the heap block  and stores 0 in
the cell.

ptr:  { ind -- relPtr } 
Returns a dereferenced, relative pointer from the handle at index.

release:  { ind -- } 
Releases the relocatable heap block pointed to by the handle and zeros the
indexed cell.

new:  { ind #bytes -- } 
Allocates a block of relocatable heap via the Memory Manager, and stores the
handle in the indexed cell.

system objects None
error messages None



class description:  X-Array

class X-Array
superclass Array
source file Struct
status Core    

description
    X-Array is an Array with the ability to execute its indexed data as cfas of Yerk words.

instance variables 
None

indexed data 4-byte cells 

methods 
accessing

exec:  { ind -- } 
Executes the cfa in the indexed cell at Ind.

classinit:  { -- }
Sets all vectors to the nullCFA.

system objects ???
error messages "I can't respond to exec: when my contents are 0"

An exec: was attempted on a cell holding 0.



class description:  Ordered-Col

class Ordered-Col
superclass X-Array
source file Struct
status Core    

description
    This class adds the concept of current size to the methods in class Array.  An ordered list is
maintained that can behave like a stack.

instance variables 
Int size # elements currently held in the list.

indexed data 4-byte cells 

methods 
accessing

size:  { -- #elements } 
Returns the number of elements currently held in the list.  This must always
be less than or equal to limit:.

add:  { val -- } 
Appends value in the next available cell, and increments size by 1.  An error
occurs if size=limit before the operation (list full).

last:  { -- val } 
Fetches the contents of the cell last added to the list.  Error if list is empty.

remove:  { ind -- } 
Deletes the element at ind from the list, and reduces size by 1.  Error if the
list is empty.

clear:  { -- }
Sets list to empty.

indexOf:  { val -- ind t OR f } 
Searches for  val  within  the current  list,  and returns the index and a True
boolean if it was found, and False boolean if not found.



system objects None
error messages "My list is empty"

A remove: or last: was attempted on an empty list.

"My list is full"
An add: was attempted with size=limit.

Note: class wordCol is a 16-bit version of Ordered-Col.  Class ByteCol is an 8 bit version.
All  methods are identical  to Ordered-Col  except that  exec:  is  not defined,  since their
classes do not inherit from X-Array.



class description:  Dictionary  (not included in Yerk.com or YerkFP.com)

class Dictionary
superclass Array
source file Dictionary
status Optional    

description
    Dictionary provides a hash-table entry and lookup data structure.  It can be used to assign values
to predefined string objects.  Dictionary allows different strings to have the same value.  String
objects must be initialized by the  new: method of the string class prior to their  entry into the
dictionary.

instance variables 
None

indexed data 4-byte cells 

methods 
accessing

enter:  { val str -- }
Enters the value to be associated with the string  str.  If a value had been
previously assigned to str it is changed to the new val.

query:  { str -- val }
Retrieves the value associated with  str.  If no entry of  str can be found in
the dictionary a value of zero is returned.

manipulating
exec:  { cfa -- }

Executes the yerk word whose cfa is on the stack for every element in the
dictionary.

cleanup
dispose:  { -- }

Disposes of the entire dictionary.

system objects None
error messages None



Examples:
0-> string test
0-> new: test
0-> string test2
0-> new: test2
0-> " hello" put: test
0-> " bye" put: test2
0-> 10 Dictionary Webster
0-> 456 test2 enter: Webster
0-> 123 test enter: Webster
0-> test2 query: Webster
1-> .
456 0-> : print type . ;
0-> 'c print exec: Webster
0-> bye 456 hello 123 0->



class description:  LinkedList  (not included in Yerk.com or YerkFP.com)

class LinkedList
superclass Object
source file LinkedList
status Optional    

description
    LinkedList  provides an organized storage technique for ordered data.

instance variables 
Int front index number of first element
Int back index number of last element
Int current current position of index
Int size # elements currently allocated to list

indexed data 4-byte cells 

methods 
accessing

getCurrent:  { -- idx} 
Returns the current  position index idx.

setCurrent:  { idx -- } 
Sets the current  position index idx.

size: { -- size } 
Returns the number of elements allocated to the list.

getData:  { -- data }
Returns the data from the current position in the list.

setData:  { data -- }
Assigns the data to the current position in the list.

front:  { -- data }
Returns the data from the first position in the list and updates idx.

prev:  { -- data }
Returns the data from the previous position before idx in the list and updates
idx.

next:  { -- data }
Returns the data from the next  position after idx in the list and updates idx.





before:  { data -- }
Inserts the data into the list in front of the current idx position.  This increases
the size of the list by one.

after:  { data -- }
Inserts the data into the list after the current idx position.  This increases the
size of the list by one.

delete:  { -- }
Deletes the current element from the list and makes it free.  Idx is updated to
point to the next element.  This decreases the size of the list by one.

display
print:  { -- }

Lists the contents of all elements in the list, printing the idx number and the
data in each corresponding element.

system objects fEvent Description of fEvent.
error messages "My list is full" Description of error message.

Data Structure-Related Yerk Words
@ ! W@ W!
C@ C! +! W+!
m@ m! mw@ mw!
i->l extend bytes limit
idxBase (^elem) at1 at4
to1 to4 ?idx ?IxObj
++4 +range -range ?range
copyM +base -base newPtr
newHandle killPtr killHandle growPtr
setHSize getHSize dispose



2
Strings

About This Chapter
This chapter describes Yerk's string-handling classes.  Strings are objects that contain variable-
length  sequences  of  text,  with  methods  for  printing,  addition,  deletion,  insertion  and  pattern
matching.  Yerk's powerful string-handling facility provides an excellent base on which you can
build parsers, natural language processors, and other text-based utilities.  

Recommended Reading 
IM -  Toolbox Utilities
IM -  OS Utilities
Yerk - II.4, "Using Strings in Yerk"

Source Files
BasicStr
String

Using Strings
Yerk strings are implemented as relocatable blocks of heap that can expand and contract as their
contents change.  The string object itself contains only a handle to the heap block that contains the
string's  data,  and a  current  offset  Ivar  that  maintains  a  current  position  within  the  string  for
searches, insertions and other operations.

Strings can be useful for a wide variety of programming needs.  They can serve as file buffers,
staging areas for text to be printed on the screen, dictionaries, or vehicles for parsing user input.
You should  consider  using strings  for  any textual  data  structure  whose  contents  are  likely  to
change  in  the  course  of  your  program's  execution.   Text  constants  can  more  efficiently  be
implemented as SCONs, TCONs, or string literals (see II.4 for more information).

Using strings is somewhat like using files, in that you must open the string before you use it and
close it when you're through.  This is done by sending a New: message to each string when your
program  begins  executing  to  allocate  the  string's  heap  storage,  and  then  sending  a  Release:
message  when  you  no  longer  need  the  string.   Release:  is  actually  inherited  from  String's
superclass, Handle, and calls the Toolbox routine DisposeHandle.

There  are  two  classes  of  strings  in  Yerk.   Both  (BasicStr  and  String)  are  compiled  into  the



distributed Yerk.com image. BasicStr supports basic string operations, such as Get:, Put: , Insert:
and Add:.  Class String adds more esoteric methods, such as pattern matching, finding substrings,
and buffered file I/O.  Many of the String methods are built around the Toolbox Utilities routine
Munger, which is a general-purpose string-processing primitive.  



You might read the IM Toolbox Utilities section on Munger to gain a deeper understanding of
what characteristics it contributes to Yerk string handling.

Strings have a current length, which is the same as the length of the relocatable block of heap
containing the string's data; a current offset, stored in an instance variable in the object; and the
textual data itself.  The offset can be adjusted by moveTo:, and determines at what position many
of the string operations will occur.  For instance, if the offset is 2 and you send an insert: message
to a string, the replacement string that you provide will be inserted before character 2 in the string
(numbering starts from 0).  The offset will be left pointing to the first byte past the inserted string.
A string will not allow you to explicitly move the offset past the end of the string, because Munger
would behave strangely if that were permitted to happen.  Note - If you wish a direct interface to
the  Munger  function,  the  Replace:  method  in  BasicStr  calls  Munger  with  the  target  and
replacement strings that you specify.

You can set the offset implicitly by sending an indexOf: message, which will cause the string to
search for the target string that you provide and set the offset to the first character at which a match
was found, or -1 if no match was found.  You should not attempt to perform any further operations
with an offset of -1, or an error will occur.

Communicating with Other Objects
While  most  of  the  method  descriptions  below  should  be  self-explanatory,  several  are  worth
additional comment.  One group of String's methods uses late binding to facilitate communication
with certain other objects.  For instance, the =: method simplifies assignment of a string to another
object that accepts { addr len -- } as its Put: parameters; the phrase:

    fred =: sam  

assigns the string Sam to whatever type of object Fred is.  The method results in a late-bound Put:
message being sent to the receiver, so the receiver can be of any class that accepts a Put: with that
format.  Another  way to accomplish  the same thing,  that  takes  more space  but  executes  more
quickly because it is early-bound is   get: sam  put: fred.  The method name=: can be used in a
similar manner to assign a string as the name of an object such as a file or window:

    file  myFcb
    myFcb  name=: sam

String also has two methods that simplify its use as a file buffer.  Read: and ReadLine: both accept
a File object and a length, and will request that the File perform a read into the string, setting the
length of the string to the number of bytes actually read.  For example:

   myFcb 80 readLine: sam
   print: sam
   A rose by any other name.  0->

reads the next line from the File object myFcb, and then prints the line that was read.  This single
method takes the place of several operations that normally would have been required for buffered



file I/O, and has the additional advantage that the file data is left in  a String object instead of a
"dead" buffer, and is therefore subject to all of the various manipulations that Strings can perform.



Finally, String's Draw: method accepts a rectangle object and a justification parameter, and draws
the contents of the string as justified text within the box specified by the rectangle.  This is a
convenient interface to the TEEdit TextBox routine.

justification =0 Left justification
1 Center justification

-1 Right justification

An subclass of class String is sArray, very similar to class ordered-col, except that it is an array of
str255 format strings, with dynamically allocated storage.  With the exception that this type of
array must be sent the new: method prior to use, it acts identically as class ordered-col.



String-Related Classes

class description:  BasicStr

class BasicStr
superclass Handle
source file BasicStr
status Core

description
    BasicStr defines a variable-length string object with basic access methods whose data exists as a
relocatable block of heap.  Size is limited only by available memory.   

instance variables 
Var offset Current offset for string operations.

indexed data None

methods 
accessing

replace:  { addr1 len1 addr2 len2 -- }
Calls  the  Toolbox  Munger  function  with  specified  target  and  replacement
strings.   If  both  strings  are  non-0,  the  target  string  will  be  searched  for,
starting at the current offset, and will be replaced by the replacement string
(addr2 len2).  Other functions described in Munger documentation.

put:  { addr len -- }
Clears the string, replacing it with passed-in string.

get:  { -- addr len }
Returns the total string, starting with byte 0. You may need to lock the string
down if you want to ensure the text to stay at that location in memory.

ptr:  { -- addr }
Returns the address of the first byte in the string. Remember, the string might
be moved by the Memory Manager, so be sure to lock the string down if you
intend to heavily write directly to its memory locations.

handle:  { -- handle }
Returns a handle to the string data.



size:  { -- len }
Returns the current length of the string.



clear:  { -- }
Sets length and offset of string to 0.

moveTo:  { offset -- } 
Sets the current offset, which cannot be past the end of the string.

next:  { chr t OR f }
Returns  false  boolean  if  at  end  of  string,  character  and  true  boolean
otherwise.

insert:  { addr len -- }
Inserts the passed-in string at the current offset.  Offset is left one byte past
the end of the inserted string.

add:  { addr len -- }
String argument is appended to the end of existing string's data.  Offset is set
equal to the length of the new string.

+:  { char -- }
Appends a single character to the existing string.

uc:  { -- }
Converts the entire string to upper case.

object creation
new:  { -- }

Allocates room for the string's data on the heap.  new: must be done before
the string can be used.

release:  { -- }
Disposes of the string's storage.  Use release: before disposing of the string
object.

display
print:  { -- }

Uses TYPE to print the string on the primary output device.

system objects parmStr Used for input from inDlg 
error messages "The offset from the last operation was negative".

You tried to perform a string operation when the offset was left 
negative.  Use moveTo: to change the offset.



class description:  String

class String
superclass BasicStr
source file String
status Optional

description
    String adds more power to BasicStr, providing methods for pattern matching, deletion, and
communication with other objects.

instance variables None

indexed data None

methods 
accessing

get:  { -- addr len }
Returns the string.

where:  { -- offset }
Returns the current offset value.

start:  { -- }
Sets the current offset to 0.

subStr:  { len -- addr len  }
Returns the substring beginning at the current offset for len.

delete:  { addr len -- }
Searches for the specified string, and deletes it.

fill:  { char len -- }
Clear the string and set it to len bytes of char.

pattern matching
indexOf:  { addr len -- offs t OR f }

Searches for the target string in the data from the current offset.

charOf:  { char -- offs t OR f }
Searches for the target character from the current offset.



communicating with objects
=:  { obj -- }

Assigns the  string  to  obj by  sending a  late-bound  put: message.   This
method locks the string first, then returns it to the original state for you.

concat:  { obj -- }
Same as add: except that an object is on the stack, not an addr len.  Like
=:, this locks the string and resets its state.

name=:  { obj -- }
Sets the name of obj by sending it a late-bound name: message.

read:  { fileObj len -- rc }
Sends a late-bound read: to  fileObj and sets the length of the string to the
actual number of bytes read.  Return code is from the disk I/O.

readLine:  { fileObj len -- rc }
Sends a late-bound readLine: to  fileObj and sets the length of the string
to the actual number of bytes read.  Return code is from the disk I/O.

display
draw:  { rect justification -- }

Calls TextBox to draw the string's text within the specified Rect object with the
required justification. 

system objects None
error messages "The offset from the last operation was negative"

You tried to perform a subStr: operation when the offset was left  
negative.  Use moveTo: to change the offset.



class description:  sArray

class sArray
superclass String
source file sArray
status Optional

description
    Sarray is an array of strings, each in str255 format.  There is no limit to the number of strings in
the collection, but each must be <255 characters long.

instance variables 
var size # elements currently held in the list.
int delimeter Character that is used as a delimeter in

  certain forms of filling the sArray

indexed data 0-255 length cells (includes count byte)

methods 
accessing

limit:  { -- size }
Returns  number  of  elements  in  sArray  object.   The  size:  method of  the
superclass, String,  will return the number of bytes in the object.

putChar:  { char -- }
Initializes the character used as a delimeter.  If a list of items exists in some
form, each item separated by a delimeter, then sArray will be able to place
this list into its own format.  An example might be lines of text separated by a
carriage return.  See place:.

put:  { addr len -- }
Given the addr len of an existing sArray, put its contents into the receiving
object. (data is already in sArray format)

place:  { addr len -- }
Assuming  the  data  is  not  in  sArray  format,  but  is  delimeted  by  some
character, as in the following format:   
   dddd|dddd|dd|d|
where d is data and | is the delimeter, use place: to put these data elements
into  the  sArray.   The  last  element  does  not  need  a  trailing  delimeter.
Putchar: is used to tell the object what the delimeter is.



system objects path (see about pathList in  Chapter III.3)
error messages "The offset from the last operation was negative"

You tried to perform a subStr: operation when the offset was left  
negative.  Use moveTo: to change the offset.
"An index was out of range"
"String elements must be < 255 characters long"

String-Related Yerk Words
" scon tcon str,
word" cmove count str255
>str255 type sFind msg#
>uc padBl



3
Files

About This Chapter
This chapter describes the Yerk classes and words that provide an interface to the  Macintosh file
system.   Class  File  combines  a  Toolbox  parameter  block  with  methods  for  reading,  writing,
interpreting and getting information about files; including Standard File I/O.  FileList provides a
mechanism for dynamic allocation of File objects instead of having to create them statically in the
dictionary.   PathList  gives  you  automated  access  to  HFS volumes.   Fin  gives  you  access  to
documents passed in to your application by the Finder. 

Recommended Reading 
IM -  File Manager
IM -  OS
IM -  Device Manager
IM - Package Manager
IM - Standard File Package
IM - Structure of a Macintosh Application

Source Files
Files
PathList
fInfo

Using Files
All file access in Yerk is done through an object of class File.  For instance, when you request that
a source file be loaded, Yerk creates a new File object, gives it a filename, opens it, and interprets
from the file rather than from the keyboard.  File has as part of its data a parameter block, which
holds  the  data  about  the  file  that  is  needed  by  the  Device  Manager  and  the  File  Manager.
Appended to this is a 64-byte area that holds the name of the file that is associated with the File
object.  To create an access path to a file, you must first create an object of class File, give it a
name, and open it:  

   File  myFile
   " demo.txt" name:  myFile
   open: myFile  abort" open failed"

The Name:  message  first  clears  the  parameter  block so that  fields  won't  be  left  over  from a



previous open.  (This implies that you must set information other than the file name, like setVref:,
after sending the Name: message.)  When you open the file, a unique IORefNum is assigned to it
and placed in the parameter block.  You may then use any of the I/O methods to access the file,
most of which return a code that reflects the result code from the Macintosh File Manager.  If this
code is non-0, it means that an error occurred during the I/O.  You should check for EOF (-39) on
reads, which should not always be treated as an error.



Because  File  objects  are  over  200  bytes  in  length,  it  is  useful  to  be  able  to  allocate  them
dynamically rather than have them locked into a static dictionary.  Class FileList provides this
function by maintaining a "stack" of pointers to file objects.  Yerk has a single 6-element object of
class FileList, called LoadFile, that it uses internally to provide a nested load facility.  You can
request  that  LoadFile  allocate  a  new temporary  File  with  the  message  New:  LoadFile.   The
message Last: loadFile returns the address of the last File object allocated, which is the "top" of
the file stack.  You could send explicitly late-bound messages to the File object on the top of the
file stack, such as:

      pad 100  read: [ last: loadFile ]
      bytesRead:  [ last: loadFile ]

However, because the message Last: loadFile is used so often, we have defined a Vect, topFile,
that contains the cfa of a Yerk word that sends this message.  Thus, you can use phrases like:

   open: topFile
   myBuf 100 read: topFile 

that exploit Yerk's ability to automatically late-bind messages that have a Value or Vect as the
receiver, making it unnecessary for you to enclose the receiver in brackets each time.

After you are through using a dynamically allocated File object, you must close it and remove it
from the file stack:

      remove: loadFile

Remove: automatically ensures that topFile is closed, but if you need to see the 'close' return code
you will want to issue close: topFile before remove: loadfile.

The  Clear: method in FileList closes and removes any currently allocated loadFiles, and is called
by Yerk's default Abort routine.  Both File and FileList have Interpret: methods, that allow you to
direct the Yerk interpreter to open and interpret from a file rather than the keyboard.  The method
in fileList passes the message through to the file object on top of the file stack.  Interpretation will
echo loaded text to the screen if the system Value dEcho is true, and will end immediately if there
is  an error.   There is also an Expect: method in File that simulates a Yerk EXPECT, only from
disk; this is different from a readLine: in that each line is echoed conditionally on dEcho, and a
null is appended to the end of the text in the buffer so that Interpretation of the line can be properly
terminated (see Glossary entry for INTERPRET).  The Query: method in File is simply an Expect:
to the TIB.

Standard File Package 
The Stdget: and Stdput: methods give easy access to the Macintosh Standard File Package.  This
code is called by most applications when the user needs to select a file to open, or a "Save As"
name.  Stdget: and Stdput: set up and execute the various calls to the package manager.  Stdget:
calls SFGetFile,  which displays the familiar scrollable list of files to open within a rectangle, and



returns with a boolean on the top of the stack that tells you whether the user actually picked a file
or hit the Cancel button.  If the boolean is true, your file object will have been set up with the
parameters obtained by SFGetFile.

Stdput: is used when you need to get a name from the user for a Save.  You need to provide two
strings - the first is a prompt, such as "Save file as:", and the second is the default 



filename that will appear within the text edit item of the dialog.  The user is free to edit the text
using standard editing techniques, and the method will return if the user hits Save, Cancel or the
Return key.  Again, a boolean is returned and if it is true, your file object will have been set up
with the parameters obtained by SFPutFile.  The source file FrontEnd contains sample Stdget: and
Stdput: messages that you might want to examine.

With the Stdget: message, you provide a list of up to four file types to be filtered by SFGetFile.
Only the file types that you have listed will be included in the list of files to select.  For instance, 

   'type TEXT 1 stdget: topFile

causes the Standard File Package to include only files of type "TEXT" in its list, (the 1 indicates
the number of types specified).

Keep in mind that neither Stdget: nor Stdput: ever actually open the chosen file.  They are identical
in function to sending Name: & SetVref: to the file object.  You must subsequently send a Create:,
Open: or OpenReadOnly: before you can access the file.

Hierarchical File System
PathList and getPtxt give you automated access to HFS volumes.  Under the original file system,
MFS (Macintosh File System), all files on a volume are accessible at a single level.  In other
words,  you do not  need to  know which  folder  a  file  lives  in  to  access  it.   Under  the  newer
Hierarchical File System, files are kept in folders which act like individual volumes themselves.
To access a file you must know which folder it lives in before you can open it.  (Folders can also
be  nested  within  other  folders.)   This  means  a  file  name  must  be  prefixed  by  a  potentially
complicated path specification before it can be opened.  An easy way to cope with accessing files
stored in multiple folders is to organize a pathList   which will be searched any time you attempt to
open a file.  Yerk provides a pathlist mechanism which is integrated into the Open: method of class
File.  To use it, create a file which lists the paths to be searched in the order you would like them
searched.  The format of the path text file is:

(nothing in first line)
::System source:
::Module source:
::Toolbox Classes:
::Yerk folder:

Each line specifies the exact string which will in turn be prepended to the unqualified filename in
the FCB in an attempt to find the file on the disk.  The first line with nothing in it, (not even a
blank), specifies the default folder; the folder from which the application started up, (the folder in
which the YERK nucleus resides until the application is "installed"), so it will be the first folder
searched.

In this example all the paths start with two colons.  This says to step out of the folder in which the
application resides then step down into the specified folder.  You may also specify one colon which
says to step down into the specific folder immediately within the application folder; or you might



use three colons which say to step out of two folder levels then step down.  You may also begin
with no colon which specifies a disk name.  If the disk name is not known but the intended disk
drive # is, you may substitute &1 or &2 for the disk name which will reference what ever disk is
mounted in the specified drive.

To load a pathlist file, type:



"nPath.txt" getPtxt

This loads the list from the file name nPath.txt into the PathList object which is automatically used
by Open:.  From then on any Open: will search this pathlist to find the file to be opened; unless the
file name is already fully qualified.  This technique gives you a degree of transparency since the
specific code which issues the Open: never needs to know the particular paths which are being
searched.  From the viewpoint of your application code, the file system is simplified to that of the
original flat directory, except that the scope is narrowed to a special set of folders.

Finder Information Block
Fin gives you access to documents passed in to your application from the Finder.  The Finder
allows you to highlight one or more documents on the desktop and then choose either OPEN or
PRINT from its File menu.  The Finder then launches the application to which the documents
belong passing in information about each file through a special information block.  Using an object
of class Fin provides easy access to these files.  For example:

file myFcb \ file object
fin myFin \ finfo object

size: myFin 0 \ loop for each file passed in by the Finder
DO \ (do nothing if no files passed)

i myFcb =: myFin \ acquire control information for each file
open: myFcb \ open the file
… \ operate on the file, then close it

LOOP

The =: method here is similar to the Stdget: & Stdput: methods of class file in that it automatically
sets up the file object ready to be opened.  Remember to check whether it was OPEN or PRINT
that was originally chosen from the Finder:

print?: myFin



File-Related Classes

class description:  File

class File
superclass Object
source file Files
status Core    

description
    File provides object-oriented access to the Macintosh File Manager.  An object of class File
should be created for each separate access path required in your application.  File objects can be
allocated dynamically by using a FileList, described below.

instance variables 
144 Bytes FCB The File Manager's parameter block
  64 Bytes fileName Room for the name of the currently open file.

indexed data None 

methods 
getting file information

size:  { -- #bytes } 
Returns the logical size in bytes of the currently open file.

bytesRead:  { -- #bytes } 
Returns the actual byte count from the last operation.

result:  { -- fCode }
Returns the File Manager's result code from the last operation.

getName:  { -- addr len }
Returns the name of the current file.

getVref:  { -- volRefNum }
Returns the volume reference number for the current file.

getDir:  { -- DirID }
Returns the folder directory ID for the current file.  For HFS volumes.

getType:  { -- fType } 
Returns the file type of the current file.



getFileInfo:  { -- fCode }
Fills the parameter block with file info as outlined in the getFileInfo call  in
Inside Macintosh.

print:  { -- }
Prints the name of the current file on the screen.

setting file characteristics
stdget:  { type0 … typeN #types -- bool }

Calls  the  Standard  Get  file  routine.   If  a  valid  file  is  chosen,  places  the
information into the file object; ready for open: If you don't want to specify a
type, set #types to 0. #types must be between 0-4.

stdput:  { addr1 len1 addr2 len2 -- bool }
Calls  the  Standard  Put  file  routine.   If  a  valid  file  is  chosen,  places  the
information into the file object; ready for open:, or create:

name:  { addr len -- }
Sets the name of the current file.  If the name is given with its fully qualified
path while running under MFS, the path specification will be disregarded.

setName:  { -- } 
Sets the name of the current file from the input stream.

reName:  { addr len -- fCode }
Sets the name of  file on disk.  File does not have to be open.

mode:  { mode -- }
Sets the positioning mode for the currently open  file.

set:  { fType sig -- }
Sets the file type and signature for the current file.

setVRef:  { volRefNum -- }
Sets the volume reference number for the current file.

setDir:  { DirID -- }
Sets the folder directory ID for the current file.  For HFS volumes.



file operations
create:  { -- fCode }

Attempts to open the file whose name is in FileName for read/write access.
If file is not found, creates it then opens it for read/write.

open:  { -- fCode }
Opens the file whose name is in FileName for read/write access.



openReadOnly:  { -- fCode }
Opens the file whose name is in FileName for read access.

new:  { -- fCode }
Creates the file whose name is in FileName with 0 length.

read:  { addr len -- fCode }
Reads len bytes into the buffer starting at addr (waited).

write:  { addr len -- fCode }
Writes len bytes from the buffer starting at addr (waited).

readLine:  { addr len -- fCode }
Reads len bytes into the buffer starting at addr (waited).  The read will 
terminate if a CR is received ($0D).

moveTo:  { pos -- fCode }
Sets the current position pointer in the parameter block to pos relative to the
beginning of the file.

last:  { -- }
Positions to the byte following the file's EOF.

close:  { -- fCode }
Closes the currently open file.

delete:  { -- fCode }
Deletes the file whose name is in fileName from the disk.  The file must not
be open, or an error will result.

volume-level operations
drive:  { drive# -- fCode }

Changes the default drive to drive#.  The file object must not contain an open
parameter block, or its information will be lost.

parameter block access
fcb:  { -- addr }

Returns the relative address of the parameter block associated with this File
object.

clear:  { -- }
Clears the parameter block for a new Open.

interpretation



expect:  { addr len -- eof }
Performs a Yerk EXPECT to the address provided, reading successive lines
from the currently open file.  Eof is true if the line is the last line of the file.
Lines are echoed to the screen if dEcho is True.

query:  { -- eof } 
Performs  a  Yerk  EXPECT to  the  TIB,  reading  successive  lines  from  the
currently open file.  Eof is true if the line is the last line of the file.  Lines are
echoed to the screen if dEcho is True.  The system Value IN is set to 0.

interpret:  { -- }
Opens and loads the source file named in FileName by repeatedly calling
query: self.  The load is terminated if an error or EOF occurs.

system objects fFcb Used by Yerk for system file access.
error messages None - return codes from File Manager



class description:  FileList

class FileList
superclass Ordered-Col
source file Files
status Core    

description
    FileList is an Ordered Collection with specialized methods that assume the elements contain
pointers to File objects.  It provides dynamic allocation of File objects, keeping the pointers in
what is effectively a file stack.

instance variables None  (see Ordered-Col)

indexed data 4-byte cells containing pointers to File objects

methods 
accessing

new:  { -- }
Allocates an object of class File on the heap and adds its pointer to the end of
the list.  Error if list is full.

init:  { -- }
Initializes list (to zeros).  No files are closed or objects removed.

interpret:  { -- }
Uses the last file object added to the list as the file from which to load.

remove:  { -- }
Closes the top file in the list, disposes of the file object on the heap  and
removes the pointer from the end of the list.

clear:  { -- }
Closes and removes all file objects currently in the list.

system objects loadFile 6-element FileList used
for nested loads.

error messages "My list is empty" A  remove: was
received with an empty list.



class description:  SArray

class sArray
superclass String
source file PathList
status Core    

description
    Sarray provides the FileList for systematic access to HFS volumes through an automatic search
mechanism. There is only one object, path, and it is late bound. 

see discussion in Chapter III.2 under Strings

system objects path Late  binding  to  heap
object.

error messages "The offset from the last operation was negative"
You tried to perform a subStr: operation when the offset was left  
negative.  Use moveTo: to change the offset.
"An index was out of range"
"String elements must be < 255 characters long"



class description:  Fin  ( not included in yerk.com or yerkFP.com)

class Fin
superclass Object
source file fInfo
status Optional    

description
    Fin provides access to the Finder Information Block.

instance variables None

indexed data None

methods 
accessing

print?:  { -- bool }
Returns a true flag if the application was started with the Finder Print option;
(menu item under FILE).

size:  { -- #files } 
Returns the number of files with which this application was started.

fRec:  { idx -- addr }
Returns the address of the information block for this file.

fRef:  { idx -- volRefNum }
Returns the volume reference number for this file.

fType:  { idx -- fType }
Returns the file type for this file.

fVer:  { idx -- fVer }
Returns the version number for this file, (typically 0).

filename:  { idx -- addr len }
Returns the name of this file.

=:  { idx fileObj -- }
Fills in the fileObj with the filename and VolRefNum of this file.

system objects None



error messages None



File-Related Yerk Words
(open) (close) (read) (write)
(delete) (fdos) +echo -echo
cleanUp Sony External Profile
HFS? getPtxt fInfo



4
Events

About This Chapter
This  chapter  describes  the  Yerk  classes  and  words  that  manage  Macintosh  events  for  the
application.  Macintosh applications are event-driven, meaning that the program must at all times
be responsive to the various input devices available to the user, including the keyboard, the mouse
and the disk.  Yerk has built-in support classes that make event handling virtually invisible to the
application, enabling the programmer to focus on the problems that he or she is attempting to
solve.   Most of the time, you will not find it necessary to concern yourself with the Event classes,
but this chapter will provide some orientation in case you would like to modify event handling to
suit your specific needs.

Recommended Reading 
IM -  Event Manager
IM -  Window Manager
IM -  Menu Manager
IM -  Control Manager
Yerk - Windows
Yerk - Menus
Yerk - Controls

Source Files
Event
Interval
Tasks 

Using Events
Class Event is the core of Yerk's event management.  It instantiates a single object, fEvent, which
resides  in  the  nucleus  portion  of  Yerk's  dictionary.   FEvent  is  functionally  an  X-Array  of  23
elements, each of which contains the cfa of a Yerk word corresponding to a particular event type.
The Macintosh OS maintains a first-in first-out queue of events received from various I/O devices,
and the application can request that the next event be accepted from the queue at any time.  If no
'real' events are outstanding, the Macintosh returns to the application with a Null event, which is
simply  a  statement  that  nothing  else  happened  so  that  the  application  can  continue  with  its
processing.

Macintosh Pascal programs are usually designed with a huge case statement at the highest level
that  processes  the  various  types  of  events  that  can  occur.   This  results  in  a  sort  of  inverted



structure, in which the lowest-level processing is managed at the highest level of the code.  Yerk
avoids this by handling as many conditions as it can behind the scenes (for instance, calling the
Menu Manager when the user clicks the mouse in the menu bar)  and using late binding to allow
the application to provide specific processing where it is needed.  For example, each window in an
application might take a unique action when the user clicks the mouse in its content region.  Yerk
simply sends a late-bound Content: message to the 



front window when a content click occurs, which results in the specific content method being
executed that is appropriate for the window's class.  Late binding allows Yerk's event management
to be completely general and open-ended, because the programmer can always build more specific
event responses into Window and Control subclasses.  Yerk's basic Window and Control classes
provide general behavior that will be acceptable for many situations.

Macintosh events are assigned a contiguous series of type codes:
Type Code Description
0 * Null event - used to provide background processing
1 Mouse down - button was depressed
2 * Mouse up - button was released
3 Key down - key was depressed
4 * Key up - key was released
5 AutoKey - key is being held down
6 Update - a window must redraw a portion of its contents
7 Disk - a disk was inserted in a drive
8 Activate - a window became active or inactive
10 * Network - an AppleBus event occurred
11 * IODriver - a device driver event occurred
12 OS Events - associated with multifinder events
13-15 * user-definable events
16-21 * not defined
22 *High level AppleEvents

Events marked with a * are events for which Yerk executes its null-event code rather than code
specific to the type of event.  If your application assigns significance to these event types, you will
have to install your own action word in the cell of fEvent corresponding to the event's type.  You
might also need to change fEvent's mask with the set: method to accommodate event types that are
currently masked out.

Class Event contains a set of named Ivars that allocate a Toolbox event record. Event's sole object,
fEvent, passes its base address to the Event Manager as the event record to use for all Yerk events.
FEvent also contains 23 indexed cells, one corresponding to each of the event types described
above.  Each of these cells contains the cfa of a word that handles the specific event type; you will
find the source for these event handlers at the end of source file Event.  A word defined at the end
of the source file Window, called SYSINIT, initializes fEvent with the correct cfas whenever Yerk
starts up.  This is accomplished by setting the System Vector OBJINIT to execute SYSINIT (as
well as whatever else you want your program to do at startup).

Listening to Events
The chief means by which you can cause Yerk to listen to the event queue is by calling the Yerk
word KEY.  This causes class Event to enter a loop that requests the next event from the queue and
executes the indexed cell corresponding to the event type.  Each handler word is responsible for
leaving a boolean on the stack that tells class Event whether to return to the caller; currently, only
Key-down and AutoKey events will trigger a return.  Other events are managed as they come,
triggering menu choices, window activation or updating, and control selections.  To the original



caller of KEY, all of this activity is invisible, because it will not resume execution until a keystroke
is received.  Thus, the caller of KEY enters a sort of "suspended animation" while the Macintosh
handles non-keystroke events.  This serves to separate the bulk of event management from the
traditional, keystroke-oriented parts of your 



application,  and  was  designed  to  simplify  Macintosh  programming  for  those  used  to  more
conventional systems.

A more general way to handle events is to use next: fevent. This will return a true if a keystroke
has occurred (see Section II.5 - Waiting for Input). Using next: fevent will allow your program to
continue looping, processing other tasks while waiting for events; it does not hang while waiting
for a keystroke.

As pointed out in chapter II.4, you might need to use the Yerk word BECOME if you nest calls to
KEY within several layers of code, because a menu or control choice could cause a new portion of
the application to begin executing, and ultimately cause the system to run out of return stack.  An
alternate  structure  is  to  do  all  keystroke  processing  via  an  infinite  loop  at  the  top  of  your
application that calls KEY and executes the Key: method of the front window.  While less familiar
to most of us, this architecture will probably result in a simpler application in the long run.

Specific Event Handling
Null events (all event types with the * above) can be used to execute the Idle: method for the front
window.   The  programmer  should  use  a  window's  Idle:  method  to  perform any  background
processing that is required for that particular window (such as call TEIdle in a text edit window).
The Idle: method should execute quickly so as not to bog down the responsiveness of the system
to input.

Mouse-down  events  are  handled  based  on  what  window  region  the  click  occurred  in  (from
FindWindow - see  IM Window Manager).  Of the seven possible regions, only two are of real
concern to the programmer, because Yerk can take appropriate action for the others.  If the mouse
is clicked in a close box, the window executes whatever action word you have installed in the
window's CLOSE vector,  just  as a content region click will  execute the window's CONTENT
vector.  The Actions: method allows you to customize these two aspects of a window's mouse click
handling.  You might also have to redefine the Grow: method for your windows if they require
resizing of controls or other unique behavior; grow: is executed in response to a grow-region click.

The Key-down handler fetches the value of the key entered from the event record's Message field,
first checking to see if the Command key was held down simultaneously.  If so, the Menu Manager
is called to process a potential key-equivalent menu choice.  Key equivalents are thus managed
automatically by Yerk, requiring only that you specify the key equivalents in your menu item text
definitions.  If the Command key was not held down, Yerk returns to the word or method that
called KEY with the value of the entered key on the stack. 

The  Update  handler  sends  a  late-bound Draw:  message  to  the  corresponding  window object,
causing it to redraw its contents.

The Disk-inserted handler attempts to mount  the newly inserted disk.  If  it  cannot,  it  calls  the
formatter.

The Activate handler determines whether the event is an Activate or Deactivate, and sends the
appropriate late-bound Enable: or Disable: message to the window involved.



The OS-Event handler determines whether the user has clicked the mouse to suspend the current
Yerk program and activate another program. If so, it executes either a suspend or resume word
supplied by the user in two vectors,  suspend and  resume.  It also will convert the application's
clipboard to the system clipboard if the user supplies the appropriate word 



in the vector cvtClip. Also, a global value is set true if the yerk program is in the foreground.

There are 3 user defineable events (see Inside Mac).

High Level events are handled by user supplied words to be placed in the vectors  AppleEvt and
HlEvt.. Yerk does not handle these events, but is setup for a stand-alone application to do so.



Event-Related Classes

class description:  Event

class Event
superclass X-Array
source file Event
status Core

description
    Event associates a Toolbox event record with a dispatcher that executes a Yerk word for each
type of event received.  

instance variables 
Int evt The named Ivars comprise an eventRecord.
Var msg
Var time
Var loc
Int mods
Int mask

indexed data None

methods 
accessing

type:  { -- evt } 
Returns the type of the last event received.

mods:  { -- mods }
Returns the value of the mods field.

msg:  { -- msg }
Returns the value of the msg field.

where:  { -- point }
Returns the position of the mouse as a global, packed Toolbox Point.

when:  { -- ticks }
Returns the number of ticks (1/60ths of a second ) since system startup.

set:  { mask -- }
Sets the event mask.



polling
next:  { -- … b }

Gets  next  event  out  of  event  queue  and  executes  the  appropriate  action
vector,  which leaves a boolean on the stack.   Some events (such as key
events)  may  leave  other  information  on  the  stack  under  the  boolean,
depending on the action handlers.

key:  { -- key }
Loops and polls the event queue (via  next:) until a keystroke is received.
During this time,  all other events will be handled automatically as they come.

system objects fEvent The system-wide Event object.
error messages See messages for class X-Array.



class description:  Mouse

class Mouse
superclass Object
source file Event
status Core

description
    Mouse integrates various Toolbox calls, providing easy access to the mouse's position in local
coordinates, the state of the mouse button, and whether a double-click has occurred.

instance variables 
Var last Ticks value when the last click occurred.
Var interval Ticks between this click and the last one.

indexed data None

methods 
accessing

get:  { -- x y but }
Returns the mouse's local position and a boolean reflecting the state of the
button.

where:  { -- x y }
Returns the mouse's current position as a local Yerk point.

click:  { -- b }
Returns 2 if last click was a double-click, 1 otherwise.

put:  { ticks -- }
Update the click interval with the current sysTicks value.

system objects theMouse 
error messages None



class description:  Timer

class Timer
superclass Object
source file Interval
status Optional
description
    Timer defines a class of interval timer objects with a resolution of 1/60th of a second.

instance variables 
Var ticks Current interval in 1/60ths of a second.
Int on Boolean is true if timer is counting.

indexed data None

methods 
accessing

get:  { -- ticks }
Returns the interval in ticks since the clock was started.

when:  { -- ticks }
Update system event record and return its time.

control
start:  { --  }

Begin timing an interval.

stop:  { --  }
Stop the clock, and store the elapsed interval in ticks ivar.

clear:  { -- }
Stops the clock, and resets internal counter to zero.

printing
print:  { --  }

Print the current interval in seconds and hundredths.

system objects sysTimer Object defined in Interval source.
error messages None



Event-Related Yerk Words
get-evt ?event stillDown? waitClick
desk sys null-evt mouse-evt
key-evt disk-evt upd-evt actv-evt
key rekey key! dblTicks
addTask killTask taskList



5
Windows

About This Chapter
This  chapter  describes  the  Yerk  classes  and  words  that  manage  windows  for  the  application.
Windows are the central objects around which the rest of a Macintosh application is built.   A
window  isolates  a  functional  portion  of  your  application,  giving  the  user  a  concrete,  visual
framework for  interaction.  Yerk's  window classes  take  away much  of  the  burden  of  window
management, providing the basis upon which you can build more detailed behavior.  Standard
Macintosh window behavior, such as dragging, growing and updating, is handled automatically by
Yerk's Window class, freeing you to solve application-level problems instead of constantly having
to rewrite system-level code for window management.

Recommended Reading 
IM -  Event Manager
IM -  Window Manager
IM -  QuickDraw
IM - Control Manager
Yerk - Events
Yerk - QuickDraw
Yerk - Controls

Source Files
Window
CtlWind 

Using Windows
Yerk provides two classes of window objects: class Window, built into the distributed Yerk.com
image,  provides behavior necessary for all windows, but does not include any management of
controls.  An optional class, CtlWind, adds the behavior necessary for a window with controls.
Because a Macintosh window record incorporates a QuickDraw GrafPort as the first portion of its
data, class Window is a subclass of class GrafPort, inheriting both the GrafPort data and three
GrafPort-related methods (see the QuickDraw section of this manual).  

Windows, like controls and certain other Toolbox objects, have a dual identity in that part of the
object is known only to Yerk, while another part is known both to Yerk and to the Toolbox.  From



the point of view of the Toolbox (and conventional languages like Pascal), a window is completely
described by a window record.  A Yerk window object packages the window record data within the
larger  context  of  the  object's  private  data,  adding  ivars  to  support  the  additional  level  of
management that a Window object provides.  The result is that the programmer is confronted with
a much simpler model using objects, because all of the "boilerplate" kinds of behavior, such as
dragging, growing, closing, updating and activation 



are handled within the window object itself rather than being thrown in with the application code.
That is how Yerk is able to simplify the logical model of the Toolbox and elevate it to a higher
level, while still giving you the freedom to change any of the default behavior that occurs in such
basic classes as Window.

There are two ways to create a new window using the Toolbox: you can ask that the Toolbox
allocate the window record on the heap, or you can provide the data area yourself.  Because the
window object includes a window record as its private data, it passes the address of its own data to
the Toolbox as the storage to use for the window record.  Thus, any windows that you create will
allocate all of their storage in the Yerk dictionary.  If this seems undesirable, or if you have an
application in which windows come and go dynamically, you can use the Heap> operator to create
window objects whose data lives on the heap, and dispose of them when you  are through (see the
Advanced Yerk Concepts chapter for more detail on using Heap>).

The fact that an object allocates a window record as the first part of its data is important, because it
simplifies the interaction between Yerk and the Toolbox.  There are many cases in which Yerk
must determine which window is involved in event processing by calling the Toolbox, which will
return a pointer to the window record.  If the window record were not part of the object, Yerk
would have to somehow derive the address of the object's data from the window record.  As it is,
the window record is synonymous with the object's base address, making communication with the
Toolbox much simpler.  Other Yerk objects, such as Controls, do not have this luxury, and must
take extra steps to derive the object address.

Window objects add to the window record data a group of instance variables that keep track of the
window's  drag and grow characteristics,  a  boolean  that  tells  whether  the  window is  currently
"alive" with respect to the Toolbox, and a set of action "hooks" that allow you to customize a
window's behavior without necessarily having to create a subclass.  These action vectors hold the
cfas of Yerk words to execute when the window is involved in a content click, an update event, an
activate event, or selection of the close box.  The ClassInit: method of Window initializes the
vectors to the cfa of NULL, except for the activate vector, which is set to the cfa of CLS.

Creating Windows
The steps involved in creating and using a window are as follows:  First, instantiate a window
class to create an object, and then initialize the action vectors of the window using the action
method.  For windows whose data exists in the dictionary or a module, this can occur at compile
time:

  Window myWind     \ create a new window object
   \  set the close, activate, draw and content vectors
   4 'cfas  null null cls null actions: myWind  

The  Activate  vector  is  executed  when  the  window  becomes  active,  and  the  Close  vector  is
executed when the use clicks the Close box.  Typically, you will use both of these hooks to adjust
items on the menu bar; enabling, disabling or changing the text in some cases.  The Draw vector is
executed when the window receives an update event, which is the Toolbox's way of telling the
window to redraw itself.  You should load this vector with the cfa of a routine that can reconstruct



the contents of your window;  the Toolbox manipulates the visible region of the window's GrafPort
so that only the area that actually should be redrawn actually is.  If the window is of class CtlWind,
any controls associated with the window will be redrawn automatically.  Lastly, the Content vector
must handle the specific processing that 



the window requires when the user clicks the mouse in the window's content region;  for instance,
a graphics editor might use this vector to select and drag graphics objects.

You can also set the window's drag and grow characteristics at compile time, if the ClassInit:
defaults do not suit your needs.  Each requires a boolean on the top of the stack reflecting whether
the window is growable or  draggable,  and the four coordinates  of  a rectangle underneath the
boolean if it is True.  For example:

   10 10 500 300 true setDrag: myWind
   false setGrow: myWind

causes myWind to be dragable, but not growable.

When your application executes, you must send a New: message to the window to cause it to
become active with the Toolbox and to draw itself on the screen.  New:  requires a rectangle
holding the dimensions of the window's frame, a title, a procID for the window type, and booleans
reflecting whether the window should be visible when created and whether it should have a close
box.  For instance:

   10 10 300 200 put: tempRect
   tempRect " A New Window" docWind true true new: myWind

would create a new document window using the dimensions stored in tempRect that would be
visible and have a close box.  If you would rather define your window's characteristics using
resources, you can call the GetNew: method to open the window using a template from a resource
file. 

Using action  vectors  will  reduce  the  number  of  subclasses  that  you would  have  to  define  to
customize windows for your application.  You might still want to create a subclass if you have
specific requirements for window deactivation, growing or other characteristics.

As with controls, you cannot define your windows as instance variables of another class, because
late-bound messages are sent to any active window (see Chapter 7, Controls).  Generally, this is
appropriate, because windows tend to be the highest-level objects in an application.  Each window
encapsulates a major section of the application into a single unit, both from the user's and the
programmer's perspective.  You can create a background task for a window by redefining the Idle:
method in class Window.  This message is sent repeatedly to the front window while the Event
object is listening to the event queue, and could be used to do things like call TEIdle in a text-edit
window, or to update a clock display.

To get a feel for how Yerk's window objects can be used, it is most instructive to look at an
existing application, such as grDemo or the Exam module.  We have provided source for these
utilities so that you can see how the various classes cooperate to build a real Yerk application.
Much of the source, as you will see, is concerned with initializing the various objects properly;
much of  the actual  work is  accomplished internally  to  the  methods  already defined for  those
objects.





Window-Related Classes

class description:  Window

class Window
superclass GrafPort
source file Window  - look at the source file for many more methods
status Core    

description
    Window is the basic class of windows without controls.

instance variables 
32 Bytes wind1 Unstructured data for the window record.
Handle CtlList Windows control list
12 Bytes wind2 Unstructured data for the window record.
Rect contRect The rectangle defining the content region.
Rect growRect Contains the window's current grow limits.
Rect dragRect Contains the window's current drag limits.
Int growFlg True if the window is growable.
Int dragFlg True if the window is draggable.
Int Alive True if the window is alive in the Toolbox.
Var Idle The window's idle event action vector.
Var Deact The window's deactivate event action vector.
Var Content The window's content click action vector.
Var Draw The window's update event action vector.
Var Enact The window's activate event action vector.
Var Close The window's close box action vector.
Int ResID Resource id for GetNewWindow.
Int scrollFlg Flag to not update fpRect for scrolling
Var zoom cfa of user supplied zoombox handler

indexed data None

methods 
setting characteristics



setLimits: { -- }
Sets both drag and grow limits based on multiple screen regions.

setView:  { -- } 
Sets the content  rectangle after  the window has been resized.   Also sets
Yerk's  scrolling  rectangle  (fpRect),  used  by  CR,  equal  to  the  content
rectangle.



setGrow:  { l t r b T or F -- }
Sets the window's grow limits.  If boolean is true, the rectangle coordinates
determine the minimum and maximum x and y values that the window can be
grown.  If false, the window will not be growable.  You may use the Yerk word
'grayRgn'  to  set  the  l  t  r  b  points  of  the  rectangle  formed by  all  graphic
screens the mac uses.

setDrag:  { l t r b T or F -- }
Sets the window's drag limits.  If boolean is true, the rectangle coordinates
determine the minimum and maximum x and y values to which the window
can be dragged.  If false, the window will not be draggable.

setIdle:  { cfa -- }
Sets the word which will execute in response to idle messages to the window.

set:  { -- } 
Sets  the  window's  grafPort  as  the  current  grafPort,  and  calls  setView  to
update the content rect.

select:  { -- }
Makes this window the frontmost, active window.

size:  { w h -- }
Sets the dimensions of the window to the given width and height,  without
moving the window's upper-left corner.

moveTo:  { x y -- }
Moves the  upper-left  corner  of  the  window to  global  coordinates  x  and y
without changing its size.

show:  { -- }
Calls ShowWindow to make the window visible.

hide:  { -- }
Calls HideWindow to make the window invisible.

actions:  { close enact draw content -- }
Sets action vectors with the cfas provided.

setAct:  { enact deact -- }
Sets the activate and deactivate vectors with the cfas provided.

setDraw:  { drawCfa -- }
Sets only the Draw action vector.



title:  { addr len -- }
Sets the title of the window to the passed-in string.

name:  { addr len -- }
An alias for title: (above).

querying
getName:  { -- addr len }

Returns the window's title string.

getVRect:  { -- l t r b }
Returns the coordinates for the window's vertical scroll bar area.

active:  { -- b }
Returns true if the window is currently active.

alive:  { -- b }
Returns true if the window is currently alive in the Toolbox.

event handling
draw:  { -- }

This method is executed when an update event occurs for the window.  If the
window is growable, a grow icon is drawn with scroll  bar delimiters.   The
window's Draw action vector is executed.

idle:  { -- }
This method may be used for background processing.  Whenever fEvent gets
a null event out of the event queue (for instance, while waiting for the user to
type a character) a late-bound  idle: message is sent to the front (active)
window.   That  window's  idle: method  can  then  do  any  background
processing necessary (such as updating a clock picture).  The idle method
defaults to a do-nothing method in class Window, and should be kept short
enough to keep from bogging down responsiveness to user input. 

enable:  { -- }
This method is executed when an activate event occurs for the window.   The
window's Enact action vector is executed. 

disable:  { -- }
This method is  executed when a deactivate event  occurs for  the window.
Does nothing in class Window.



update:  { -- }
Forces an update event to occur that will  redraw the entire window.   The
window will not actually be redrawn until  KEY is called and event handling is
active.



close:  { -- }
This method is executed when the user clicks the window's close box.  The
window's Close action vector is executed, and CloseWindow is called.

drag:  { -- }
This method is executed when a mouse-down event occurs in the window's
drag region.  The Toolbox is  called to  pull  a gray outline around with  the
mouse.  If inactive, the window is made active after dragging.  

grow:  { -- }
This method is executed when a mouse-down event occurs in the window's
grow region.  The Toolbox is called to pull  a gray outline around with the
mouse.  If inactive, the window is made active after growing.

content:  { -- }
This method is executed when a mouse-down event occurs in the window's
content region.  The window's Content action vector is executed.

key:  { -- }
This method can be used to provide window-specific keystroke handling.  The
key: method in class Window simply does a DROP.  See Chapter II.4 for
more information.

object creation
new:  { rect addr len procID visible goAway -- }

Calls  the Toolbox to create a new window using this  object's  data as the
window  record.   Parameters  determine  the  window's  bounds  in  global
coordinates, the title, the type ( procID -- see dlgWind, docWind, rndWind) of
window, and whether it is visible and has a close box.

getNew:  { resID -- }
Same as new:, but uses the resource template with resource id resID.

classInit:  { -- }
All objects of class Window are set to non-growable, non-draggable windows
with null action vectors except for Draw, which is set to the cfa of CLS.

example:  { -- }
Creates an example object of class Window.



system objects fWind The Yerk system window.
error messages None



class description:  CtlWind

class CtlWind
superclass Window
source file CtlWind
status Optional    

description
    CtlWind adds behaviors necessary to support the use of Controls with windows.

instance variables   None  (inherited from superClass Window)

indexed data    None

methods 
event handling

draw:  { -- }
This method is executed when an update event occurs for the window.  If the
window is growable, a grow icon is drawn with scroll  bar delimiters.   The
window's Draw action vector is executed, and any controls associated with
the window are redrawn.

close:  { -- }
This method is executed when the user clicks the window's close box.  The
window's  Close  action  vector  is  executed,  and  CloseWindow  is  called.
Storage for the window's controls is disposed of.

content:  { -- }
This method is executed when a mouse-down event occurs in the window's
content region.  If  there is a hit  in a control,  the control  is tracked and its
action vector  executed.   Otherwise,  the window's Content  action vector  is
executed.

system objects None
error messages None

Window-Related Yerk Words
find-window docWind rndWind dlgWind
initFont savePort restPort thePort
theWindow ctlHit? g->l



6
Menus

About This Chapter
This chapter describes the Yerk classes and words that allow you to build your application's menus
easily and quickly.  Yerk's special menu loader enables you to define all of the data relevant to
your menus in a single, easily edited text file.

Recommended Reading 
IM -  Event Manager
IM -  Menu Manager
Yerk - Events

Source Files
Menu
nmenu.txt

Using Menus
Yerk menus integrate the Toolbox concept of a menu within an object that stores Yerk words to be
executed when the user makes a particular choice.  The Yerk event object, fEvent, takes care of
actually pulling down the menus by tracking the mouse and calling the menu manager whenever
there is a click in the menu bar.  FEvent also handles key-equivalents for you automatically if you
declare the key equivalents in your item text.  If the user makes a choice, a message is sent to the
Yerk menuBar object telling it to find the menu affected and execute the cell indexed by the item
number chosen.  Menus are a subclass of X-Array, which provides the ability to execute one of a
list of cfas by index.

There are two steps to defining the menus for your application.  You must first create an object of
class Menu for each menu in the application (excluding the Apple menu, which is predefined), and
allocate as many indexed cells to each menu object as there are items to be selected. For example: 

      7 menu FileMen     \  FileMen can have at most 7 items.

After creating the menu objects in your code, you must either use the original Yerk method of
creating a menu text file or create menu resources with ResEdit. Both ways are discussed below.
(If you do use the original method, you must support it yourself, as after version 3.63, it will no
longer  be supported).  If  you intend on creating a stand-alone application,  you should use the
resource method.



The Old, non-supported way: Building the Menu Text File
You  create  a  text  file  that  contains  the  initialization  text  for  each  menu's  title,  items,  key
equivalents and handler words.  This text file can be loaded when your application starts up 



by executing the word GETMTXT, which will allocate the menus by calling the Toolbox and fill
them with the data in the file.

The menu text file gathers all of the information about your application's menus into a single
place.  Yerk uses this information much as the Toolbox uses resources, to initialize the various data
within the menu objects.  Here is an example of a portion of an actual menu text file:

   FILEMEN  256 \ name of object, resource ID
   "File" \ text string for title
      "Launch Editor/E"     ed \ text for 1st item, handler word
      "Load.../L"     stdLoad \ text for 2nd item, handler word
       ... \  1 line for each item
      "\\\" \  end the item list

for each menu in the application, you must have a series of lines in the menu text file in the above
order.  The first line is the dictionary name of the menu object, followed by a unique integer ID.  In
certain circumstances, you may decide you don't  want to have the menu displayed in the menu bar
just yet; in this case, you can add an 'x' after the ID (on the same line).  The next line is the title of
the menu as it is to appear on the menu bar, in quotes.  The lines that follow each specify the text
for an item, followed by the name of a Yerk word that will be executed if that item is chosen.
Within the quotes, you can use any of the special characters listed in Inside Macintosh to indicate
an icon, a key equivalent, or other format specification. The item list is terminated by a line with
three backslashes in quotes.

Most applications will have an Apple menu with an About item and the desk accessories.  You can
simply copy the Apple menu specification that Yerk uses for its menus (available from source file
nMenu.txt), and substitute your own information on the About line:

APPLEMEN  1 \  name of menu object and its ID
 "$14" \  special character for apple symbol
 "About Yerk..." about \ substitute your own text and handler
 "(__________" null \ a separator line
 "RES"   DRVR \ load all resource names of type DRVR
 "\\\"
 
When your application starts up, it should call GETMTXT, passing it a string that is the filename
of the menu text file.  The file must available on the current volume.  For example:

     " nMenu.txt"   getMtxt

is how Yerk loads the menu bar with its own menus.  GETMTXT first clears the menu bar of any
existing menus,  and then loads  each menu in the order that  it  is  found in the menu text file.
Another word is GETPMTXT, which loads popUp and hierarchical menus without clearing the
existing menuBar.  Your program may have all menus (up to 24) in one file, read in with getMTxt,
or separate files with popUps in another, read in when needed with getPMTxt.



Menu items which call hierarchical menus need to have a special character appended to the name
of the menu item.  See IM-IV for more info.

The supported way: Using Menus from a Resource File



You may use any resource editor (ResEdit) to create menu resources. Below is an example of Yerk
code to bring up the standard Yerk menus, assuming the menus are defined in the 'yerk.rsrc' file
with the resource ID's 1,2,3,4,5:

2 'cfas about null 1 put: appleMen
5 'cfas stdLoad doSave stdSave Print bye 2 put: fileMen
8 'cfas null null sysCut sysCopy sysPaste sysClear null doEdit 3 put: editMen
9 'cfas doWords doOlist doClist hier exam doDe doGrep null install 4 put: utilMen
9 'cfas pEcho lEcho null .path .room doMlist purge null null 5 put: yerkMen

clear: menubar \ clear the menubar at compile time
draw: menubar \ now draw it as blank

: nmenu  applemen fileMen editMen utilMen yerkMen 5 init: menubar ;

Executing the word 'nmenu' will load in the menus from the resource file, insert them into the 
menubar, and draw the menubar.

Manipulating Menus
After your menus are loaded, various methods are available to change their characteristics.  Get:
and Set: fetch and store the item string for a given item.  The Menu Manager numbers items from
1 to N instead of starting from 0, so you should be aware that item number N is handled by cfa
number N-1 in the menu's indexed data.  The Toolbox automatically highlights (turns black) any
menu title for which an item is chosen,  and the Normal: method can be used to unhighlight any
menu.  Class Menu automatically does a Normal: after a handler returns, but some never return if
they do a BECOME or an ABORT.  Class Menu's Enable: and Disable: methods are useful during
activate  events,  when  you  should  ensure  that  only  those  menu  items  are  enabled  that  are
appropriate for the current window and the current state. MBar's Enable: and Disable: methods
affect the entire menuBar rather than individual menu items.  Finally, Check: and UnCheck: (in
Menu) control the display of a checkmark next to an item.

Yerk defines a single instance of class MBar, called menuBar.  Because forward references to this
object were necessary, menuBar is vectored through a Value.  As a result, any messages that you
send to the menuBar object will  be late-bound.  You should rarely need to communicate with
MenuBar directly, because most of the methods important to an application are in class Menu.



Menu-Related Classes

class description:  Menu

class Menu
superclass X-Array
source file Menu
status Core    

description
    Class menu creates objects that associate Yerk words with each of the items in a Macintosh
menu.  The Yerk word associated with an item is executed when that item is chosen by the user.

instance variables 
Int resID Resource ID or menu ID.
Var Mhndl Handle to the menu's heap storage.

indexed data 4-byte cells (must be cfas of valid Yerk words) 

methods 
creation

init:  { resID -- }
Sets the resource ID of this menu.

ID:  { -- resID }
Returns the resource ID of this menu.

new:  { addr len -- }
Calls the toolbox to create a new menu using this object's data as the menu
record.

insert:  { -- }
Inserts this menu into the menu bar.

add:  { addr len -- }
Appends this menu to the menu bar.

addRes:  { type -- }
Adds all resources of a type to this menu.  Use this to append fonts or desk
accessories to a menu.

accessing



get:  { item# -- addr len } 
Returns the text string for an item.



set:  { addr len item# -- } 
Sets the text for an item. (NOTE: stack order is true after version 3.63)

normal:  { -- } 
Removes the highlighting from all titles across the menu bar (regardless of
which menu is the subject of this selector).

enable:  { item# -- } 
Makes an item eligible for selection by the user (black).

disable:  { item# -- }
Makes an item ineligible for selection by the user (gray).

check:  { item# -- }
Shows a check mark by the item.

checked?: { item# -- b }
Returns true if the menu item has been checked.

unCheck:  { item# -- }
Removes a check mark from an item.

exec:  { item# -- }
Executes the handler for this item.

opendesk:  { item# -- }
Runs the desk accessory named by the specified item.

system objects none 
error messages "You must send me a new: message first"

An operation was attempted before the menu was created with the
Toolbox.



class description:  AppleMenu

class AppleMenu
superclass Menu
source file Menu
status Core    

description
    Class AppleMenu creates the menu object that displays the Desk Accessory List.

instance variables 
none

indexed data 4-byte cells 

methods 

exec:  { item# -- }
Executes the handler (openDesk: super). The first 2 items are executed
as the superclass (for 'about')

system objects Apple menu usable by any application.

error messages "You must send me a new: message first"
An operation was attempted before the menu was created with the
Toolbox.



class description:  hMenu

class hMenu
superclass Menu
source file Menu
status Core    

description
    Class hMenu provides support for hierarchical menus.

instance variables 
none

indexed data 4-byte cells (must be cfas of valid Yerk words) 

methods 
insert:  { -- }

Inserts the hierarchical menu in the menubar.

system objects none

error messages "You must send me a new: message first"
An operation was attempted before the menu was created with the
Toolbox.



class description:  pMenu

class pMenu
superclass hMenu
source file Menu
status Core    

description
    Class pMenu provides primitive support for popUp menus.

instance variables 
int type Should the menu appear relative to cursor, or  at

  an absolute position
point offset The offset of the pmenu from the cursor
int lastPick Stores the last item picked.

indexed data 4-byte cells (must be cfas of valid Yerk words)

methods 
popUp:  { -- }

Brings the  popUp Menu to  life.  It  will  appear  with  the x,y  offset  from the
current mouse position.

getText:  { item# -- addr len }
Same as get: for class Menu, but acts on the popUp item.  Get: might be
needed to get the text of a hierarchical menu attached to the popUp.

offset:  { x y -- }
Set the offsets. If IVAR type is set to 0, this is the relative position that the
mouse will appear from the upper left corner of the menu.  If type is set to 1,
then  the  stored  offset  is  interpreted  as  an  absolute  location  within  the
window's local coordinate system.

position: { x y -- }
Same as offset. Just an alias.

type:  { n -- }
Sets the type of popUp.  n can be 0 or 1. See offset:.

putItem:  { lastPick -- }
Set the initial item to be hilited.  The last item you pick is stored automatically.



getItem:  { -- lastPick }
Get the item that was last selected.

getHText: { item -- addr len }
Get  the  text  of  the  associated  hierarchical  menu,  activated from a popup
menu.

getName:  { -- addr len }
Get the text of the last selected item.

system objects none

error messages "You must send me a new: message first"
An operation was attempted before the menu was created with the
Toolbox.



class description:  Mbar

class MBar
superclass Object
source file Menu
status Core    

description
    MBar is used to create a single system object, MenuBar.  It maintains the list of menu objects
and their IDs, and is chiefly useful at startup to build and draw the menu bar via messages sent by
the menu text loader.  

instance variables 
24  WordCol IDs The list of menu IDs.
24  Array Menus An array of menu objects.

indexed data None

methods 
accessing

clear:  { -- }
Clears all menus out of the menu bar.

add:  { men0 … menN #menus -- }
Specifies the menu objects to be added to the menu bar.

new:  { -- }
Calls the toolbox to insert each menu from add: into the menu bar and draws
the menu bar.

init:  { nmen0 … menN #menus -- }
Combines the actions of clear:, add: and new:.

draw:  { -- }
Draws the menu bar.  (Primarily used by new:).

enable:  { -- }
Enables all menus in menu bar.

disable:  { -- }
Disables all menus in menu bar.



exec:  { item# menuID -- }
Executes the handler for the given item in the given menu.



click:  { -- }
Monitors for a click in the menu bar, calls the toolbox to track menu selection
until the mouse button is released, then executes the handler for the selected
item (if any).

key:  { chr -- }
Executes the handler of an item selected by a command key combination.

system objects menuBar System-wide menu bar (vectored).
error messages None

Menu-Related Yerk Words
?new mSelect doDsk AppleMen
getMtxt getPMtxt theMenu mItem
menuID



7
Controls

About This Chapter
This  chapter  describes  the Yerk classes and words  that  provide an interface to  the Macintosh
Control Manager.  Controls are graphical objects that respond to mouse actions, and allow the user
a  visually  direct  means  of  controlling the behavior  of  the application.   Yerk classes  facilitate
definition of all of the standard control types, and provide behavior appropriate to the Macintosh
User Interface Guidelines.

Recommended Reading     
IM -  Window Manager
IM - Control Manager
Yerk - Windows

Source Files
Ctl
VScroll

Using Controls
Yerk groups Macintosh controls into two classes: class Control provides support for basic controls
with a single part, and includes buttons, check boxes and radio buttons. Class VScroll adds the
behavior necessary for  scroll bars, which have 5 parts.

In order to use controls within your application, you must define a window that has the ability to
recognize and manage controls.  This behavior is provided by class CtlWind, whose Content: and
Draw: methods include send appropriate messages to check for control hits with the mouse or
redraw the window's control list.  CtlWind contains whatever support can be included for a generic
window with controls, and uses the calls that the Control Manager provides which traverse the
window's  control  list  rather  than accepting handles  to  particular  controls.   You might  wish to
define a subclass of CtlWind to deal more directly with the specific controls associated with your
window.  For example, when a window becomes inactive, it should send Disable: messages to any
scroll bars that it contains.  This can only be sent to the individual controls, and not the entire
control list.

As is the case with other Toolbox objects (such as Windows) control objects have a dual identity.
Part of the control's data is maintained by the Toolbox on the heap, and can be accessed by the
application via a handle.  If you were writing in a conventional language, such as C or Pascal, you



would consider the handle to  be the control, and you would have to build a lot of structure into
your code to support the user's selection of the various parts of the control.  Yerk, on the other
hand, combines the control's Toolbox-related data with its own data to comprise a single object
that contains all it needs to know about managing the various actions that can occur.  You need
only instantiate and initialize the object properly, and it takes care of the rest.



Controls store the cfas of Yerk words as action vectors that will be executed when the various parts
of the control are selected.  Simple controls (class Control) have a single action vector, while scroll
bars have 5.  You can use these classes as a model for defining your own control classes if you
wish to define new types.

When you click in the content region of a window with controls, CtlWind executes the Yerk word
CTLHIT? which calls the Toolbox routine FindControl to determine whether the mouse was inside
of an active control  when the button was depressed.   If  so,  two different things  may happen,
depending on the control type and part number affected.  For  buttons, check boxes and scroll bar
thumbs, the control is highlighted while the button remains depressed, but no other action is taken.
The Toolbox routine TrackControl takes care of highlighting the correct control part while the
mouse is in its proximity and the button is down.  When the button is released, a late-bound Exec:
message is sent to the control object, causing it to execute its action handler for the correct part.

For the other parts of the scroll bar, however, it is desirable that a custom routine be executed
while the button is held down in the part.  For instance, while you hold down the button in the up
arrow of a scroll bar, an editor should gradually scroll the document in small increments until the
button  is  released.   This  can  be  accomplished  by  passing  a  procedural  argument  to  the
TrackControl routine, but the procedure must look like a Pascal procedure rather than a Yerk word.
Yerk contains a special compiler that packages Yerk words in a way that makes them look like
Pascal procedures (:PROC ... ;PROC).  We have created one of these procedures to execute the
action  vector  of  a  control  repeatedly  while  the  mouse  button  is  down,  and  Yerk  passes  this
procedure to TrackControl in the case of the non-thumb scroll bar parts.  Whatever actions you
have defined for these parts will be executed while the part is being selected.

Creating Control Objects
Defining a control object requires three steps.  First, instantiate the object with a phrase like:

    Control saveBtn

You should then initialize the newly created object to assign it a particular control type and give it
an action procedure.  For example: 

    buttonID  init: saveBtn
    'c  doSave actions: saveBtn

This assigns saveBtn a control type of Button, and sets doSave as its action word.  DoSave will be
executed  if  the  user  releases  the  mouse  button  while  the  mouse  is  within  saveBtn's  control
rectangle.  Finally, when your program executes, you must send a New: message to the control to
cause it to create a Toolbox Control record on the heap and draw itself within its owning window.
The New: message for an object of class Control requires as input a location,  a  title  and the
address of the owning window object.  For instance: 

   100 250  " Save" myWind  new: saveBtn



The control object determines the width of its rectangle automatically by determining the width in
pixels of the title that you provide.  The location that you specify is the TopLeft portion of the
control's enclosing rectangle.



Control action words often need a way to determine which control they have been dispatched
from.  For example, a common action taken in scroll bar arrows is to get the control's value, add
some increment to it, and put the new value in the control.  This could be done in the following
manner:

    : doUpArrow    get: myCtl  1- put: myCtl  -1 scroll: theText   ;

In this example, the word myCtl is actually a Vect that Yerk provides as a simple way for a control
action  word  to  derive  its  owning  control  object.   Yerk  automatically  compiles  a  late-bound
reference when a Vect or Value is used as the receiver of a message, and in this case myCtl is
vectored to a word that derives the control object's address from the methods stack.  This allows
you to write very general action words that can be assigned to several different control objects
simultaneously.

Design Issues
Because late-bound messages  must  be sent  to  controls  and windows,  these  objects  cannot  be
defined as normal named instance variables, because to do so would fail to provide a class pointer
for the runtime method lookup.  Late binding is necessary because there are cases in which the
Toolbox returns the address of an object to the application,  but is is undesirable to make any
assumptions about the actual class of the object.  For instance, when you click the mouse button,
the Toolbox call FindWindow tells you in which window the click occurred.  This requires that a
Content: message be sent to the object, but because the programmer is free to define subclasses of
class Window, there is no way to know ahead of time what class the window object belongs to. 

For this reason, you cannot define these types of objects (those whose address might be received
from the Toolbox) as instance variables.  We have found that it is generally advantageous to make
controls and windows global objects anyway, because it avoids a lot of passthrough methods that
take up space.  However, you might want to define a new type of control window that could be
instantiated dynamically, such as a text-edit window.  It is most convenient in this case to bind the
control to the window as an instance variable, because then both will be created together.  The
solution is to use a Var within the window to hold the address of the control object, and then
instantiate the control on the heap when the window is created:
  
  :M CLASSINIT:   heap> VScroll put: myScrollBar    ;M

This will create a scroll bar object on the heap with a valid class pointer, and place its address in
the Var owned by the window.   You can then send the scroll bar messages such as:

  get:  [ obj: myScrollBar ]

When the window is closed, you should dispose of the heap block allocated to the scroll bar by
using the Dispose: method directly on the Var.

Dialogs
Yerk implements  controls  in  dialogs  differently  than  in  normal  windows.   Since  dialogs  rely
heavily  upon resource  definitions  and don't  usually  occasion  much interaction  with  the  items



themselves  other  than  getting  or  setting  values,   Yerk  does  not  build  dialog  control  items  as
objects, but rather accesses them through methods in the Dialog class itself.  This saves a lot of
space, and actually simplifies the interface for the programmer.  All dialogs in Yerk are currently
modal - if you require non-modal dialog support, use a CtlWind with procID 



dlgWind and control objects, and handle it via Yerk's normal window mechanism as opposed to the
Toolbox Dialog Manager.  



Control-Related Classes

class description:  Control

class Control
superclass Object
source file Ctl
status Core

description
    Control describes the class of basic, single-part controls, such as buttons, radio buttons and
check boxes.

instance variables 
Int procID The Control definition ID for the Toolbox.
Handle cltHndl Handle to the control record.
Var action Cfa of action word to execute.
Int myValue Contains the numeric value of the control.
Var ownWind Pointer to window that owns this control.

indexed data None 

methods 
accessing

init:  { procID -- }
Sets the control definition procedure for the control.

actions:  { cfa -- }
Sets the action word for the control.

get:  { -- val }
Returns the value of the control.

put:  { val -- }
Sets the value of the control.

setTitle:  { addr len -- }
Sets title of control.

getTitle:  {  -- addr len }
Gets title of control.



getRect:  { -- l t r b }
Returns the coordinates of the control rectangle.



handle:  { -- ctlHandle }
Returns the value of the control handle. 

exec:  { part# -- } 
Executes the control's action handler. 

display
size:  { w h -- }

Sets the width and height of the control rectangle.

moveTo:  { x y -- }
Sets the topLeft point of the control rectangle.

hilite:  { hiliteState -- }
Hilights, disables, or enables  the entire control. 

enable:  { -- }
Enables the control.

disable:  { -- }
Disables the control.

update:  { -- }
Causes the control to be redrawn. 

hide:  { -- }
Calls Toolbox HideControl. 

show:  { -- }
Calls Toolbox ShowControl. 

object creation 
new:  { x y addr len theWind -- }

Create a new control in the Toolbox for this control object.  X and Y are the
location of the upper left corner.  Addr and Len specify the title string, and
theWind is the address of the owning window object.   The control  will  be
created visible, with a control  rectangle large enough to accommodate the
title.  Initial value is 0, and range is 0 to 1.

getnew:  { id window -- }
Creates the control defined in a resource file.  The resource file must first be
opened, if not already.

classInit:  { -- }
Sets default control to type Button with null action.



example:  { -- }
Creates an example control of type Button.



system objects None
error messages None



class description:  VScroll

class VScroll
superclass Control
source file VScroll
status Optional

description
    VScroll provides the additional support required of scroll bars beyond the methods that its
superclass provides for simple controls.

instance variables 
5  bArray parts List of part numbers for table lookup.
5  X-Array actions Cfas corresponding to each part.

indexed data None

methods 
accessing

actions:  { lnUp lnDn pgUp pgDn thumb -- }
Sets action handlers for the 5 parts.

putRange:  { lo hi -- }
Set the lower and upper limits for the control's values.

object creation
new:  { x y len theWind -- }

Create a new scroll  bar in the Toolbox and save its handle.  This method
assumes a width of 16, for a vertical scroll bar.

classinit:  { -- }
Sets action handlers to null and selects scrollbar type control.

example:  { theWind -- }
Create an example vertical scroll bar and display in theWind.

display
disable:  { -- }

Sets entire control to 255 hiliting.

enable:  { -- }
Sets entire control to enabled hiliting.



system objects None
error messages None



Control-Related Yerk Words
myCtl theCtl ctlHit? ctlExec
ctlProc buttonID checkID radioID
vsID get-ctl-obj set-ctl-obj nullOSStr
useWFont



8
Graphics

About This Chapter
This  chapter  describes  the Yerk classes and words  that  provide an interface to  the Macintosh
QuickDraw graphics package.  This part of the Toolbox is responsible for all of the basic graphics
management underlying windows, controls, dialogs and menus, and can also be called directly to
accomplish various drawing tasks.  Because QuickDraw is so pervasive in the Macintosh, you
should read the Inside Macintosh chapter on QuickDraw as a first step in learning how to use the
rest  of  the  User  Interface  Toolbox.   While  Yerk  provides  an  easy  interface  to  much  of  the
QuickDraw package,  it  is very useful to try and get an understanding of the basic philosophy
behind  QuickDraw  graphics  by  reading  Inside  Macintosh  before  you  attempt  to  do  any
sophisticated graphics programming.  Other Toolbox modules, such as the Window Manager and
the Control Manager, rely heavily upon QuickDraw to do much of their actual work.

Recommended Reading 
IM -  QuickDraw
IM - Window Manager
IM - Toolbox Utilities

Source Files
QD
QD1 

Using the Graphics Classes
Class Rect is the most widely used QuickDraw class, describing an extensive set of behaviors
appropriate to basic rectangles.  Rectangles are used for a variety of operations in the Toolbox,
such as sizing windows, controls and dialogs,  drawing rectangular frames, filling with a pattern,
and clipping.  RndRect, an optional class, modifies Rect's behaviors for rounded-corner rectangles,
and Oval for rectangle-delimited ovals.   Class GrafPort is the superclass of window, and describes
the graphics structure that QuickDraw uses as its foundation for windowed behavior.

QDBitMap describes a QuickDraw bitMap structure, which is a rectangular region of dots that are
on or off, each dot corresponding to a bit in memory.  QDBitMap isn't very useful in itself, but can
provide a foundation for a more elaborate bitMap subclass.  Class Image  combines a bitmap's
structure with data necessary to draw the bitmap on the screen via the QuickDraw CopyBits call.
An Image is an indexed object whose indexed area is used to hold the source bitmap, and can be



moved to an arbitrary location on the screen.  Image is useful for storing bit images that you might
want to move around on the screen.  You can initialize an Image's graphics data programmatically
without  having to  go through a resource  file,  using  any available  methods  to  fill  the  Image's
indexed data area.  This might be useful for fast-moving images in an animated game.



Class Picture is an interface to QuickDraw's picture mechanism, storing its data in a resource file.
Pictures can be created by drawing in MacPaint, cutting a section of the drawing, and pasting it
into the Scrapbook; you must then use the resource editor to move the Picture from the scrapbook
into your resource file.  You can draw the Picture by sending a getNew: message followed by
goTo: and Draw:.  Class Icon also stores its data in a resource file, but in this case the data is
limited to an icon's 32-by-32 bit array.  Classes Picture and Icon rely on the Toolbox Utilities calls
GetPicture and GetIcon.

The  Yerk  word  Cursor  serves  as  a  defining  word  to  associate  names  with  cursor  resource
definitions.  For instance:

   1 cursor  IBeamCurs

associates the name IBeamCurs with the cursor data whose resource ID in the system is 1.  This
happens to be the cursor used for editing text.  After this declaration, you can change the current
cursor to this image by simply executing the word IBeamCurs.  Yerk predefines four cursor images
for you: IBeamCurs, crossCurs, plusCurs, and watchCurs.

Yerk provides access to the system pattern list via the word sysPat.   For instance, the phrase:

     3 SysPat

leaves  a pointer to the system pattern with ID 3.  This can be used to send a Fill: message to
various graphics objects.



Graphics-Related Classes

class description:  Point

class Point
superclass Object
source file QD
status Core    

description
    Point provides a building block for Rect.  A Rect is composed of two Points, each consisting of
two  Ints,  Y and  X.   Point's  methods  are  useful  in  providing  more  advantageous  access  to  a
rectangle's data.  QuickDraw stores Y before X in Rectangles, but Yerk always represents Points
on the stack as ( X Y -- ).

instance variables 
Int Y The Point's Y coordinate.
Int X The Point's X coordinate.

indexed data None

methods 
accessing

get:  { --  x  y  }
Returns the values in Y and X. 

getX:  { --  x  }
Returns the value in X. 

getY:  { --  y  }
Returns the value in Y. 

int:  { -- x:y }
Returns a single longword with x and y packed into the high and low words.

put:  { x  y  --  }
Stores new values in Y and X. 

putX:  { x   --  }
Stores a new value in  X. 



putY:  { y  --  }
Stores a new value in Y. 



system objects None
error messages None



class description:  Rect

class Rect
superclass Object
source file QD
status Core    

description
    Rect is a widely used class that describes various properties of Rectangles.

instance variables 
Point TopL Point describing top left corner.
Point BotR Point describing bottom right corner.

indexed data None

methods 
accessing

get:  { --  l t r b   } 
Returns the values in the Rect's two Points in (X  Y  X  Y) format.   The first
pair is the topLeft Point, and the pair on top of the stack is the bottomRight
Point.

getTop:  { --  x y  }

getTopX:  { --  x  }

getTopY:  { --  y  }

getBot:  { --  x y  }

getBotX:  { --  x } 

getBotY:  { --  y }

put:  { l t r b -- }
Stores new coordinates in the Rectangle. 

putTop:  { x y -- }

putTopX:  { x -- } 

putTopY:  { y -- } 



putBot:  { x y -- } 



putBotX:  { x -- } 

putBotY:  { y -- } 

=:  { rect -- } 
Implements a right-to-left assignment of one rectangle to another.

size:  { --  w  h  }
Returns the size of the rectangle in pixels as width and height.

center:  { --  x y }
Returns  the  center  point  of  the  rectangle  in  the  local  coordinates  of  the
current GrafPort.

inset:  { dx dy -- }
Causes the rectangle to be grown or shrunk around the same center point  by
calling InsetRect.  Does not redraw the Rect.

offset:  { dx dy -- }
Causes the rectangle to be moved a specified distance X and Y.  Does not
redraw the Rect.

drawing
draw:  { -- }

Draws the rectangle's frame.

print:  { -- }
Draws the rectangle's frame.

disp:  { l t r b -- }
Combines the actions of put: and draw:.

clear:  { -- }
Fills the rectangle's frame with the current GrafPort's background pattern.

paint:  { -- }
Fills the rectangle's frame with the current GrafPort's foreground pattern.

fill:  { pattern -- }
Given a pointer to a QuickDraw Pattern, fills the Rect's frame with the Pattern.
For example,  3 sysPat fill: myRect would fill the rectangle with the system
pattern #3.

invert:  { -- }
Inverts the pixels bounded by the rectangle.



clip:  { -- }
Clips all subsequent drawing to the area bounded by the rectangle.

update:  { -- }
Causes an update  event  to  occur  for  the current  window that  will  redraw
everything inside the rectangle.

example:  { -- }
Shows an example of a rect.

system objects tempRect A scratch rectangle.
fpRect Used for scrolling within fWind.

error messages None



class description:  RndRect

class RndRect
superclass Rect
source file QD1
status Optional    

description
    This class implements Rect's methods for rounded-corner rectangles.

instance variables 
Point ovalSize Holds the X and Y radius of the corner curves.

indexed data None

methods 
accessing

init:  { x  y -- }
Sets the radius in pixels of the rectangle's rounded corners.

   (see methods in class Rect)

system objects None
error messages None



class description:  Oval

class Oval
superclass Rect
source file QD1
status Optional    

description
    This class implements drawing methods for ovals, which are bounded by a rectangle.

instance variables  none
  

indexed data None

methods 

(see methods in class Rect)

system objects None
error messages None



class description:  GrafPort

class GrafPort
superclass Object
source file QD
status Core    

description
    This class maps the record structure for a GrafPort.  A QuickDraw GrafPort defines a local
drawing environment with its own coordinate system and pen characteristics, and provides the
basic functionality necessary for windowing.  A Window record incorporates a GrafPort as the first
part of its data.

instance variables 
16 Bytes graf1 Allocates the first 16 bytes of the GrafPort.
Rect PortRect The port rectangle defining the GrafPort's limits.
84 Bytes graf2 Allocates the last 84 bytes of the GrafPort.

indexed data None

methods 
accessing

getRect:  { -- l t r b }
Returns the coordinates of the GrafPort's PortRect.

putRect:  { l t r b -- }
Sets the coordinates of the GrafPort's PortRect.

drawing
set:  { -- }

Causes this to be the current GrafPort for subsequent drawing.

system objects None
error messages None



class description:  QDBitMap

class QDBitMap
superclass Object
source file QD1
status Optional    

description
    This is a template class that simply maps the data structure of a QuickDraw bitmap.  You can
use it as a superclass for other classes that have drawing and bit manipulation methods.

instance variables 
Var baseAddr The absolute base address of the bit image.
Int rowBytes How many bytes make up a horizontal row.
Rect bndsRect Sets the coordinate plane for the bitmap.

indexed data None 

methods 
accessing

put:  { addr width  l t r b -- }
Stores new values for base address, rowBytes and bndsRect.

system objects None
error messages None



class description:  mage

class Image
superclass Array
source file QD1
status Optional    

description
   Image is a sophisticated class that can be used to describe an arbitrary bit image.  You provide
the drawing mode, the rowBytes and coordinates of the source bitmap, and fill in the indexed area
with the actual bit image for the object.  The image can then be drawn at any location on the
screen.  See the IM - QuickDraw section on CopyBits for more information.

instance variables 
Var baseAddr Base address of source bitmap (see QDBitMap).
Int rowBytes Row bytes for source bitmap.
Rect bndsRect Sets the coordinate plane for the source bitmap.
Var destBits Address of destination bit image.
Int mode Drawing mode for the image.
Rect destRect Rectangle in which image is to be drawn.

indexed data 4-byte cells 

methods 
accessing

getPort:  { -- }
Derives  appropriate  source  and  destination  bit  image  pointers  from  the
current GrafPort.  Should be done once at runtime for each Image.

init:  { mode rBytes x y -- }
Sets the drawing mode, row bytes of the source bitmap, and location of the
upper left corner of bndsRect for the source bitmap.

goTo:  { x  y -- }
Moves the location of the destination image without actually drawing it.

drawing
draw:  { -- }

Draws the image at its current location.

moveTo:  { x  y -- }
Moves the location of the destination image and redraws it.



classInit:  { -- }
Sets  the  drawing  mode  to  Xor,  row-bytes  =  2  and  the  location  of  the
destination image 0,0.

system objects         None

error messages       None



class description:  Picture

class Picture
superclass Object
source file QD1
status Optional    

description
    This class provides an interface to the Toolbox Picture facility.  This provides a convenient way
to represent arbitrary graphics images as a series of calls to QuickDraw routines.  Pictures can be
created programmatically or by using MacPaint and cutting and pasting into the Scrapbook desk
accessory. 

instance variables 
Handle picHndl Handle to an open Picture's data on the Heap.
Int resID Resource ID for the Picture data.
Rect destRect Boundaries for drawing the Picture.

indexed data None 

methods 
accessing

init:  { resID -- }
Sets the resource ID of the picture.

getNew:  { -- }
Loads the Picture's data from a resource file using the resource ID set by
init:.  (You should not balance each getNew: with a kill:, getNew: can
be used repeatedly and will automatically reuse its heap space.)

open:  { l t r b -- }
Opens  a  new  picture  for  programmatic  creation  using  the  coordinates
provided for the picture's frame.

close:  { -- }
Closes the currently open picture.

kill:  { -- }
Disposes of the picture's heap storage.

size:  { x  y -- }
Sets the width and height of the picture's destination rectangle.



goTo:  { x  y -- }
Sets the location of the upper left corner of the picture.  Does not redraw
the image.

drawing
draw:  { -- }

Draws the picture at its current location.

disp:  { x y resID -- }
Combines the actions  of  init:,  getNew:,  goTo: and  draw:.   Use this
method when displaying an image from a PICT resource, like those from the
scrapbook.

system objects       None 

error messages     None



class description:  Icon

class Icon
superclass Object
source file QD1
status Optional    

description
    Icons are bit images confined to a 32-by-32 bit format.  Class Icon allows you to define an
icon's  data  within a resource file,  and draw it  from within your  application by using only its
resource ID.

instance variables 
Handle theHandle Handle to the icon's heap data.
Int resID Resource ID for getNew:
Rect theRect Destination rectangle for drawing.

indexed data None 

methods 
accessing

init:  { resID -- }
Sets the object's resource ID.

getNew:  { -- }
Loads the Icon's data from a resource file using the resource ID in resID.

goTo:  { x  y -- }
Sets the location of the upper left corner of the icon without drawing.

drawing
draw:  { -- }

Draws the icon at its current location.

disp:  { x y resID -- }
Combines the actions of init:, goTo: and draw:.

system objects       None
error messages     None

Graphics-Related Yerk Words
Cursor sysPat g->l line
scroll >origin gotoxy @xy
iBeamCurs plusCurs crossCurs watchCurs



srcCopy srcOr srcXor savePort
restPort cls



9
Dialogs

About This Chapter
This chapter describes the Yerk classes and words that manage dialogs and alerts for the application. 
Dialogs are special-purpose windows that allow the user to modify parameters that affect the 
operation of your program.  Alerts tell the user of exception conditions,  and verify that certain 
critical operations are appropriate before executing them.

Recommended Reading 
IM -  Window Manager
IM -  Dialog Manager
IM -  Control Manager
Yerk - Windows
Yerk - Controls

Source Files
Alert
Dialog

Using Dialogs
Class Dialog is, like Menu, a subclass of X-Array.  Dialogs are similar to menus in that they  have 
items associated with them that can be selected by the user.  Dialog items can be controls, static 
(non-editable) text, or editable text.  A dialog item is selected by pressing the mouse button in the 
region assigned to the item; if an item is enabled, it will cause the Dialog Manager to return 
immediately to the caller.  Text-edit items do not return immediately, but wait for keyboard input to 
be terminated by a carriage return.  

Macintosh dialogs can be modal or non-modal.  Yerk's version 2.0 Dialog class supports only modal 
dialogs, which do not allow the user to activate a different window while the dialog is active.  Non-
modal dialogs can be implemented in Yerk as windows with procID dlgWind, and control objects as 
items.  

Dialogs are heavily dependent upon resource definitions for the window and the item list.  You can 
use Rmaker or the Resource Editor to create resources of type DLOG and DITL, and then store the 
resource ID in a Yerk object of class Dialog (see IM - Dialog Manager).  The items in a dialog's item
list are not defined as control objects in Yerk, because they can more easily be accessed via methods 



in class Dialog itself.  A Dialog object's indexed cells are loaded with the cfas of Yerk words, one per
item.  For example, the handler for a Control of type CheckBox might be to Get: the value of the 
control, XOR it with itself, and Put: the result back in the control.  This would result in toggling  the 
value of the control between 0 and 1, turning the check mark off and on.  The value of the checkBox 
could be used to set a program parameter when the user leaves the dialog.



Each handler must end with one of two possible messages to the owning dialog.  If the item chosen 
indicates that the user wants to leave the dialog, and the data provided by the user is acceptable, the 
handler should send a Close: message to its dialog, which will make the window disappear and 
release the heap storage for the Toolbox data.  Otherwise, the handler should reenter the dialog by 
sending a Modal: message to it.  Under no circumstances must the handler simply return, because 
that will probably result in entering Yerk's event management, which will attempt to treat the Dialog 
as a subclass of Window, which it is not.

Item data can be accessed via Get: and Put: messages to the dialog, which assume that the item is a 
control; for text-edit items, use GetText: and PutText:.  SetSelect: will set the selection range for a 
text-edit item.  If you need to perform operations not provided in class Dialog, you can either get the 
handle for the item via the Handle: method, and call the Toolbox directly, or you can define a 
subclass of Dialog that has additional item methods.

To summarize, here are the steps involved in creating a Yerk dialog:  first, you must create resource 
definitions for the dialog and its item list (for examples, see Yerk's resource definitions in Yerk.r).  
Then define a dialog object with as many indexed cells as there are items, and initialize it to the 
resource ID of the DLOG resource.  For instance:

      4  Dialog  inDlg \ Yerk's general input dialog has 4 items
      3  Init:  inDlg \ the resource ID of the DLOG is 3

Then, you should set the item handlers of the dialog with the Actions: method:

      4 'cfas  getChoice noAction noAction getChoice  Actions: inDlg

This causes the OK button and the text-edit field (items 1 and 4, indexed cells 0 and 3) of Yerk's 
general input dialog to execute the word GETCHOICE if either is selected.  GETCHOICE sends a 
GetText: message to the text-edit item and places a true on the stack, telling the caller that a valid 
string was entered.  The other handlers correspond to the dialog's Cancel button and a static text 
item, which will not return anyway because it is disabled in the Resource definition.

When it is time to execute the Dialog, ensure that the correct resource file is open, send a GetNew: 
message to load and display the dialog window, followed by a Modal: message to enter the Dialog 
Manager's event-handling loop.  From  here, everything will proceed automatically, presuming that 
your handlers were coded correctly.  If you wish to modify the dialog's item list in memory, you can 
do so after sending the GetNew: message and before the Modal: message.

The Modal: method does not close the dialog before returning to the caller.  This is necessary to 
support reentering the dialog from a control handler.  The implication is that any handler that doesn't 
reenter the dialog must close the dialog via the Close: method.  Here, then, is the structure required 
to use a Dialog box:

getNew: inDlg \ Loads the DLOG and DITL resources into memory
… \ Optional code; may pre-draw the dialog
Modal: inDlg \ Passes control to the Dialog Manager



… \ Optional code
Close: inDlg \ Dismisses the dialog box from the screen

In certain circumstances you may need to reenter the Dialog Manager's loop after having received 
control back from Modal: (for instance, a check box or radio button item).  This can 



be accomplished by using the word ReturnToModal.  (Sending another Modal: message will seem to
work but will pollute the stack -- iterative use of Modal: will crash the system!).  The following is 
an example using ReturnToModal for Radio buttons:

3 Dialog Sam \ This dialog has 2 radio buttons and an OK button
1000 init: Sam \ assumes there is a dialog with resource ID of 1000

2 RadioSet Rset \ a set of 2 radio buttons
Sam init: Rset \ associate Radio set with the Dialog
1 add: Rset \ add the item numbers to the list
2 add: Rset

\ ( -- )  Turn off any previously selected button; turn on button now selected
: Rbutton get: theItem select: Rset ReturnToModal ;

\ ( -- )  Report which button was ultimately selected
: Done ." You chose item #" get: Rset . ;

3 'cfas Rbutton Rbutton Done actions: Sam       \ set action vectors

getNew: Sam \ load the dialog resource
1 select: Rset \ default button setting
modal: Sam \ pass control to the Dialog Manager
close: Sam \ remove the dialog box from the screen

Alerts are very similar to Dialogs in implementation, with the exception that loading the Alert and 
entering the modal event loop are accomplished in a single operation via the Show: message.  You 
must have a resource definition of type ALRT in your resource file with an associated item list.  The 
Init: method of class Alert accepts both a resource ID and a type code; the type determines which 
icon will be printed in the upper-left corner of the alert:

   
Type = 0 Caution Alert

1 Note  Alert
2 Stop  Alert

>2 no icon 

Because it is loaded and executed in a single operation, you cannot modify the item list for an Alert 
in memory.  Therefore, you should create item lists containing the exact information for each alert in 
your application.  You could, of course, also define a subclass of Alert that separates the loading and 
event-handling operations.

Also provided is Alert" which gives you a predefined alert box without having to define any 
resources.  Use Alert" in place of Abort" in your application to comply with the "Mac Standard".  
See section in chapter II.6.



Dialog-Related Classes

class description:  Dialog

class Dialog
superclass X-Array
source file Dialog
status Optional    

description
    Dialog implements a modal dialog object by associating the Toolbox dialog data with an X-Array 
containing the dialog's item handlers.

instance variables 
Int resID The resource ID of a DLOG resource.
Var dialPtr Pointer to the dialog's non-relocatable heap.
Var ProcPtr Pointer to the PROC definition for ModalDialog.
Int boldItem item# to be drawn with a bold outline.

indexed data 4-byte cells (must be cfas) 

methods 
object creation

init:  { resID -- }
Sets the resource ID of the dialog's DLOG resource.

hilite:  { item# -- }
Sets the item to be boldly outlined when the dialog is drawn.

actions:  { cfa0 ... cfaN -- }
Sets the dialog's item handlers.

setProc:  { cfa -- }
Sets the filterProc to be used by modal.  This must be a :PROC definition.



getNew:  { -- }
Loads the resource template for the dialog and displays its window as the
frontmost window.  No key event can be processed after getNew: is issued
and before modal: is issued.  (This means a getNew:, modal: sequence
must be typed on one line if executed from the Yerk prompt.)

show:  { -- }
If the dialog resource is set to be initially invisible, you will want to show: it
when all the items are drawn.  It makes for a nicer build creation appearance.

modal:  { -- }
Enters the Dialog Manager's modal event handler, which will beep whenever
the user  tries to click the mouse outside of the dialog window.  If  a  click
occurs  inside  an  enabled  item,  the  dialog  will  execute  the  handler
corresponding  to  that  item,  which  should  either  close  the  dialog  or  use
ReturnToModal.

close:  { -- }
Closes the dialog window and disposes of the associated heap.

accessing items
get:  { item# -- val }

Gets the value of a control item (numbered from 1 to N).

put:  { val item# -- }
Sets the value of a control item.

handle:  { item# -- itemHandle }
Returns the handle to an item to allow direct manipulation via the Toolbox
routines.

getText:  { item# -- addr len }
Returns the text string for an item.

putText:  { addr len item# -- }
Sets the text string for an item.

setSelect:  { start end item# -- }
Sets the selection range for an editable text item.



drawing
draw:  { -- }

Forces drawing of the dialog without (or before) executing modal:.  Useful in
non-modal (or pre-modal ) situations.

set:  { -- }
Same as set: for class Window. Any text will be output to the dialog object.

frame:  { -- }
Draw the frame around the boldened OK button.

setUserItem:  { userItem -- }
Tell the dialog to include this user item. See class UserItem.

global parameters
ParamText  { addr0 len0 addr1 len1 addr2 len2 addr3 len3 -- }

This is a word, not a method.
Calls  the  Dialog  Manager  routine  ParamText  which  defines  dialog  text
substitution  strings.   All  subsequent  static  or  editable  text  in  dialogs  will
automatically substitute strings 0 through 3 for occurrences of "^0", "^1", "^2",
and "^3", respectively.  NOTE: the combined length of the four strings must be
less than or equal to 252 bytes.

theItem, itemHandle, itemType
objects (see source file) holding parameters for selected items.

system objects inDlg Yerk's general input dialog (module).
error messages None



class description:  UserItem

class UserItem
superclass Rect
source file Dialog
status Optional    

description
    UserItem is a class to support the use of user items in dialogs. A draw procedure (see IM) is 
necessary to tell the Dialog Manager how to draw the user item.

instance variables 
Var myProc Drawing procedure.
Int disabled Is this item to be disabled?.
Int itemNo Item number in dialog.

methods 
putItem:  { item# -- }

Tell the userItem what item it is within the dialog.

disable:  { -- }
Marks the user item as disabled.

enable:  { -- }
Marks the user item as enabled.

setProc:  { cfaProc -- }
Sets the procedure for drawing the user item.

system objects None 
error messages None



class description:  RadioSet

class RadioSet
superclass WordCol
source file Radio
status Optional    

description
    RadioSet provides support for radio button controls by organizing them into a group and handling 
the display function.

instance variables 
Var theDialog Pointer to dialog that owns this control.

indexed data None

methods 
accessing

init:  { dialog -- }
Associates this dialog with the radio set.

select:  { item# -- }
Select radio button for this item.  If  any other button had been previously
selected, it will be deselected.

get:  { -- item# }
Return the number of the item which has been selected.

system objects None
error messages None



class description:  Alert

class Alert
superclass X-Array
source file Alert
status Optional    

description
    Alert loads and displays alerts defined in a resource file.

instance variables 
Int resID Resource ID of an ALRT resource.
Int type Icon type to display (see above).

indexed data 4-byte cells  (must be cfas)

methods 
object creation

init:  { resID type -- }
Sets the icon type and resource ID of the Alert.

show:  { -- }
Loads the Alert from a resource file, and enters the Dialog Manager's modal
event loop.  Item handlers are executed as in Dialog, above.

disp:  { resId type -- }
Combines the actions of init: and show:.

system objects None
error messages None

Dialog-Related Yerk Words
theItem itemHandle itemType



10
Drivers

About This Chapter
This chapter describes the Yerk classes and words that allow your application to communicate with
Macintosh device drivers such as the sound, printer  or serial driver.  All Macintosh device drivers
communicate with the application via 6 basic calls: Open, Close, Read, Write, Control and Status.
Yerk provides a general  interface to the driver support upon which can be built classes tailored to
specific drivers. 

Recommended Reading 
IM -  Device Drivers
IM -  Serial Driver
IM -  Sound Driver
IM - Printer Driver
IM - OS

Source Files
Drvr
Serial
Print
Sound 

Using Drivers
Macintosh device drivers use Parameter Blocks to pass data to and from the application.  Class
PBDrvr  maps  out  the  structure  of  a  generalized  Parameter  Block  object  whose  behavior  is
appropriate to any driver.  You can then define subclasses of PBDrvr, as we have in classes Port
and Printer, that add specific behavior for the driver in question.  All device drivers communicate
with the application via 6 basic Toolbox calls:  Open, Close, Read, Write and Status.  PBDrvr has
methods that perform these calls, assuming that you have already set up the parameter block with
the appropriate data.  The Yerk word (FDOS) can also be used to make a Toolbox call involving a
parameter block (see glossary).

PBDrvr's data consists of a 12-byte area for the text name of the driver, followed by a set of
instance  variables  that  allocate  a  parameter  block.   Of the  four  variant  records  for  parameter
blocks,  the  two  that  are  of  most  interest  for  non-block-structured  devices  are  IOParam  and



CtlParam.   These  two  variants  both  begin  at  offset  26  in  the  parameter  block  (immediately
following IORefNum).  Yerk does not have innate support for variant records,  so the instance
variables within PBDrvr reflect a hybrid parameter block that can be used for both I/O (Open,
Close, Read, Write) and control (Control, Status) calls.  

To make a Control or Status call, you should place the desired Control code in the Ivar csCode,
followed by the call's parameters in csp1, csp2 and following fields if needed.  



There might be calls for which the mapping of csp1 and csp2 as Ints is inconvenient, in which case
you can simply do direct stores to the area starting at (addr: header + 28).  Your individual driver
classes should implement the commonly used Control calls by setting up the data as described and
then sending the message Control: super or Status: super.

Read  and  Write  calls  can  be  performed  in  two  modes:  Wait  (synchronous)  or  No-Wait
(asynchronous).  In the former, your code will hang until the I/O operation is complete, at which
time control is returned in the normal manner.  No-waited I/O requires that you pass the address of
a Yerk :PROC word to be executed when the call completes.  Control immediately returns to the
place following the call,  but your passed-in completion word will  be executed as an interrupt
handler whenever the I/O call completes.  This would allow you, for instance, to write a terminal
emulator in which you have simultaneously pending Read and a Write calls to the serial port.
Whichever one occurred would be serviced by the appropriate completion word.  Your completion
routine should be very short, because certain critical Macintosh interrupts are disabled while your
routine is executing.  The best approach is to set flags within your completion routine, and do any
lengthy operations after you have returned to the main wait loop by polling the state of the flags.

Class  Port  implements  an  interface  to  the  Macintosh  ROM  serial  driver.   The  sequence  of
messages in the following example is important - Open: and Reset: must come last:

   Port Modem
   0  1  Init: Modem \ port=0 (modem port)  direction=1  (output)
   1  8  0  setConfig: Modem \ 1 stop bit, 8 data bits, no parity
   9600 baud: Modem
   open: Modem
   reset: Modem \ Send the parameters to the port

The serial ports have separate IORefNums assigned for their input and output sides; you assign
one of the four possibilities to a given Port object by using the Init: method.  The Config: method
allows you to set the stop bits data bits and parity.  The Baud: method accepts most of the standard
baud rates to set line speed.  The Cts: method (not shown in the example) allows you to turn
hardware handshake on or off; both waited and nowait Read and Write are supported.  You can
then Open: the port and send a Reset: message to send the communications parameters to the
driver.



Driver-Related Classes

class description:  PBDrvr

class PBDrvr
superclass Object
source file Drvr
status Optional    

description
    This class provides a general interface to any Macintosh device driver.  It defines a parameter
block with basic methods to manipulate its data, along with implementations of the 6 basic Device
Driver Toolbox calls.

instance variables 
12 Bytes name Text name of driver.
12 Bytes header Fields for internal use 
Var IOComp Absolute address of IO completion PROC word.
Int IOResult Result code from last operation.
Var IONamePtr Abs address of driver name.
Int Vref Volume reference number
Int IORefnum I/O reference number identifies which driver.
Int CSCode Control call type code.
Int csp1 Control call parameters
Int csp2
Var IOBuffer Abs address of the buffer for I/O
Var IOReq Number of bytes to read or write.
Var IOAct Number of bytes actually read or written.
Int IOPosMode Block device positioning mode.
Var IOPosOffset Block device offset position. 

indexed data None 

methods 
accessing

fcb:  { -- addr }
Returns the base address of the parameter block.

name:  { addr len -- }
Sets the name of the driver.



bytesRead:  { -- #bytes }
Returns the actual number of bytes read or written.



result:  { -- code }
Returns the completion code from the last operation.

I/O operations
open:  { -- fcode }

Attempts to open the driver with the given name and/or refNum, and returns
the result code.

close:  { -- fcode } 
Attempts to close the driver with the given name and/or refNum, and returns
the result code.

read:  { addr len -- fcode }
Performs a waited read into the buffer at addr for len bytes.

write:  { addr len -- fcode }
Performs a waited write from the buffer at addr for len bytes.

readNW:  { cfa addr len -- fcode }
Performs  a  no-waited  read  into  the  buffer  at  addr for  len bytes,  and
executes the proc specified by cfa (which must be a :PROC definition) when
the I/O is complete.

writeNW:  { cfa addr len -- fcode } 
Performs  a  no-waited  write  from  the  buffer  at  addr for  len bytes,  and
executes the proc specified by cfa (which must be a :PROC definition) when
the I/O is complete.

kill:  { -- fcode }
Kills any pending operation of the port.

system objects None
error messages None



class description:  Port

class Port
superclass PBDrvr
source file Serial
status Optional    

description
    Port is a subclass of PBDrvr that provides an interface to the Macintosh ROM serial driver.  It
supports both waited and no-wait I/O with optional CTS hardware handshaking.

instance variables 
Int thePort 0=modem port, 1=printer port.
Int direction 0=input, 1=output, 2=both.
Int config Configuration word for SerReset Control call.
Int inRefNum Input IORefNum
Int outRefNum Output IORefNum

indexed data None

methods 
accessing

init:  { port#  direction -- }
Sets the physical port and direction for this object.  Port# can be 0 (modem)
or 1 (printer); direction can be 0 (input), 1 (output), or 2 (both).

config:  { stopBits dataBits parity-- }
Sets communication parms for the Port.  Stop bits can be 1 or 2; data bits can
be 7 or 8; and parity can be 1 (odd), 2 (even), or 0 (none).

setConfig:  { configWord -- } 
Allows you to set the config word directly.

baud:  { baudRate  -- }
Sets  the  data  transfer  rate  for  the  port.   Should  be in  multiples  of   300.
Reset: should be used after setting this way.

buffer:  { addr len -- }
Increases the internal buffer size from its default of 64 bytes.

isOpen:  { -- b }
True if the driver has been opened by any application.



I/O operations  (also see PBDrvr)
open:  { -- fcode }

Opens the read driver and/or write driver for the port and sends it the current
communications parameters.

control:  { -- }
Performs a control call using the port's parameter block.  See IM.

status:  { -- }
Performs a status call using the port's parameter block.  See IM.

reset:  { -- }
Sends the communications parameters to the port.  The port must be opened
and parms set before sending the reset:.

get:  { -- char }
Reads a single character from the serial port (waited).

put:  { char -- }
Writes a single character to the serial port (waited).

read:  { addr len -- fcode }
Performs a waited read into the buffer at addr for len bytes.

write:  { addr len - fcode }
Performs a waited write from the buffer at addr for len bytes.

readNW:  { cfa addr len -- fcode }
Performs  a  no-waited  read  into  the  buffer  at  addr for  len bytes,  and
executes the proc specified by cfa (which must be a :PROC definition) when
the I/O is complete.

writeNW:  { cfa addr len -- fcode }
Performs  a  no-waited  write  from  the  buffer  at  addr for  len bytes,  and
executes the proc specified by cfa (which must be a :PROC definition) when
the I/O is complete.

bytesRead:  { -- #bytes }
Returns the actual number of bytes read or written.

bytesIn:  { -- #bytes }
Returns the actual number of bytes received, but not read.



baudRate:  { baudRate -- }
Sets the data transfer rate for the port.  Should be in multiples of  300.  This
informs the Mac driver immediately, and you do not have to Reset:.

cts:  { bool -- fcode }
Turns CTS handshaking on or off.

dtr:  { bool -- fcode }
Turns DTR handshaking on or off.

xon:  { bool -- fcode }
Turns Xon/Xoff handshaking on or off.

system objects None
error messages None

Driver-Related Yerk Words
(open) (read) (write) (close)
(fdos)



11
Floating Point

About This Chapter
This  chapter  describes  the  Yerk  classes  and  words  that  manage  floating  point  values  for  an
application running on a Macintosh with 512K bytes of memory, or more.  A floating point number
is a 10 byte data value which is stored in a block in the heap and is accessed through its pointer.

Recommended Reading 
SANE manual

Source Files
fltMem
fpCode
fargs
fpi/o
finterpret
fvalue
elCode
fpExtra
Float

Using Floating Point
Class Float is an interface to the Standard Apple Numerics Environment, (SANE).  Floating point
computations are implemented as direct calls to SANE routines.  Many but not all SANE functions
are implemented as methods of class Float.  Other functions are available as Yerk words, (e.g., ln1,
exp1, x**y, compound, annuity, etc…), See the Glossary in Part IV of the manual.

The Yerk floating point interpreter is contained in YerkFP.com, not Yerk.com.  To use the floating
point,  you  must  open  either  YerkFP.com,  or  a  saved  dictionary  image  that  originated  with
YerkFP.com.

It is important to note that Yerk inherits certain behaviors from FORTH concerning decimal points
when running the standard integer interpreter.  Particularly, the decimal point is ignored except that
DPL marks its position during input.  In the Yerk floating point interpreter the occurrence of a
decimal point causes conversion to a 10 byte Float number which is stored in a block of storage in



the floating heap.  The application retains a pointer to the storage and is responsible to use the
prescribed operations so as not to drop the last copy of a pointer before freeing the Float, nor to
free the Float while still using a working copy of the pointer.



A floating point number is created when a decimal point is used on input:

1.2 \ this creates the float and puts its pointer on the stack

You can use the normal stack operations to alter the position of a float on the stack:

1.2 3.4 \ creates two floats
swap e. e. \ swaps and prints them, (deallocating their blocks)

To dup or drop a Float, however, you must use special  operators that take the float heap into
account:

1.2 3.4 fdup e. \ creates two floats; dups the top one and prints it

There might be special cases in which you want to use regular DUP to make a copy of the pointer,
which is faster than FDUP.  There are two dangers to avoid: 1) leaving your self with a pointer to a
deallocated heap block, or 2) dropping all copies of a pointer before the corresponding block is
deallocated.  The following example is a safe use of DUP:

1.22 dup .h fdrop \ creates a float, prints its pointer, then drops it

The following are examples of floating arithmetic:

10.3 3.0 f* e. \ multiply two floats and print the product
3.4 5.5 f+ e. \ add two floats and print the sum
1.0 sin e. \ compute the sin of the float and print the result

fValue is the analog to Value for floating point numbers:

.211 fValue stuart \ create a float value with an initial value
stuart e. \ print the value
1.234 -> stuart stuart e. \ store a new value and print it
2.2 ++> stuart stuart e. \ increment the value and print it

Class Float creates an object with a variety of computational methods:

Float fred \ create a float object
print: fred \ print its value
1.34 put: fred  print: fred \ change its value and print it
3.4 +: fred  print: fred \ increment the value and print it
sin: fred  e. \ find the sine; doesn't change fred's value

Class fArray creates a floating point array:

3 fArray harold \ create a 3 element float array
3.9 1 to: harold \ set 1st element to 3.9



2.145 2 to: harold \ set 2nd element to 2.145
print: harold \ print all elements of harold
2 at: harold e. \ print 2nd element of harold



You  can  define  a  floating  point  local  variable  by  preceding  the  name  with  '%'.   The  usual
operations are used:

: tst { int1 %flt1 -- } \ declare 1 integer and 1 float parameter
int1 . %flt1 e. \ print both values, each in their own format
3.445 ++> %flt1  %flt1 e. \ increment the float and print it
1.22 -> %flt1  %flt1 e. ; \ change the value of the float and print it

Conversion between Yerk integers and floats are accomplished as follows:

123 >float e. \ convert  the integer to a float and print it
3.545 float> . \ convert the float to an integer and print it

It should not be necessary to create objects of class FltHeap.  Yerk provides fltMem which will
accommodate up to 100 Float numbers.  In certain cases you may want to use method New:, which
returns a pointer to a new float block and Dispose:, which frees a float block, although the printing
words and methods automatically dispose of float heap blocks.  Also, Room: returns the number of
free float blocks remaining in the float heap.



Floating Point - Related Classes

class description:  Float

class Float
superclass Object
source file Float
status Core    

description
    Float provides the basic methods for manipulation of floating point numbers.

instance variables 
10 Bytes data Floating point representation of the value.

indexed data None

methods 
accessing

get:  { --  fval }
Returns the value in the data area. 

put:  { fval -- }
Stores a new value in the data area.

=:  { faddr -- }
Assigns this float's data to another object.

sign manipulation
absval:  { -- |fval| }

Computes the absolute value of the Float and returns the result.

neg:  { -- ±fval }
Changes the sign of the Float and returns the result.

arithmetic functions
+:  { fval -- }

Adds fval to the contents of the Float's data.

-:  { fval -- }
Subtracts fval from the contents of the Float's data.



*:  { fval -- }
Multiplies fval into the contents of the Float's data.

/:  { fval -- }
Divides the contents of the Float's data by fval.

trigonometric functions
sin:  { -- sin(x) }

Computes the sine of the value of the Float.

cos:  { -- cos(x) }
Computes the cosine of the value of the Float.

tan:  { -- tan(x) }
Computes the tangent of the value of the Float.

arctan:  { -- tan-1(x) }
Computes the arc tangent of the value of the Float.

transcendental functions
ln:  { -- ln(x) }

Computes the natural logarithm of the value of the Float.

exp:  { - -ex }
Computes the exp of the value of the Float.

log:  { -- log10(x) }
Computes the log base 10 of the value of the Float.

antilog:  { -- 10x }
Computes the anti logarithm of the value of the Float.

conversions
deg:  { -- degrees }

Converts radians to degrees and returns the result.

rad:  { -- radians }
Converts degrees to radians and returns the result.

printing
print:  { -- }

Prints the value in the data area of this Float.

system objects None



error messages None



class description:  fArray

class fArray
superclass Object
source file Float
status Core    

description
    fArray provides an array construct for floating point numbers.

instance variables 
None

indexed data 10-byte cells

methods 
accessing

at:  { index --  fval }
Returns the data at a given indexed cell.

to:  { fval index -- }
Stores data at a given indexed cell.

fill:  { fval -- }
Stores fval in each cell of the array.

print:  { -- }
Prints the elements of the array with their respective index number.

system objects None
error messages None



class description:  FltHeap

class FltHeap
superclass Object
source file FltMem
status Core    

description
    This class defines the floating heap.

instance variables 
Int FreeHead Offset of first free block.

indexed data 12-byte cells

methods 
object creation

init:  { --  }
Sets all blocks to free and links them together.

new:  { -- fPtr }
Returns a pointer to a new block.

dispose:  { fPtr -- }
Disposes of the block pointed at by fPtr.

room:  { -- #free }
Returns the number of free float blocks remaining in float heap.

system objects fltMem The  system  supplied  float
heap provides 100 blocks.

error messages None



Floating Point-Related Yerk Words
fDup fDrop fOver fValue
fCon fLit fLiteral e
pi 1.0 0.0 ln(10)
e. e.r f, fnumber
f+ f- f* f/
float> >float f= f<>
f< f> f<= f>=
f0= f0< f0> fAbs
fNegate round trunc ln
ln1 log log2 log21
exp exp2 exp1 exp21
sin cos tan arctan
cot x**y compound annuity
deg2rad rad2deg sqrt yerk>flt
yerk>int f.r atof fmax
fmin


